結果
| 問題 |
No.1387 Mitarushi's Remodeling
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-02-07 22:03:39 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,044 ms / 2,000 ms |
| コード長 | 2,580 bytes |
| コンパイル時間 | 239 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 300,748 KB |
| 最終ジャッジ日時 | 2024-07-04 15:36:01 |
| 合計ジャッジ時間 | 62,273 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 67 |
ソースコード
mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)
N = 5*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル
for i in range( 2, N + 1 ):
g1[i]=( ( g1[i-1] * i ) % mod )
inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0
def _ntt(f,L,reverse=False):
F=[f[i] for i in range(L)]
n = L.bit_length() - 1
base = omega
if reverse:
base = rev_omega
if not n:
return F
size = 2**n
wj = pow(base,2**22,mod)
res = [0]*2**n
for i in range(n,0,-1):
use_omega = pow(base,2**(22+i-n),mod)
res = [0]*2**n
size //= 2
w = 1
for j in range(0,L//2,size):
for a in range(size):
res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod
t = (w * wj) % mod
res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod
w = (w * use_omega) % mod
F = res
return res
def ntt(f,L=0):
l = len(f)
if not L:
L = 1<<((l-1).bit_length())
while len(f)<L:
f.append(0)
f=f[:L]
F = _ntt(f,L)
return F
def intt(f,L=0):
l = len(f)
if not L:
L = 1<<((l-1).bit_length())
while len(f)<L:
f.append(0)
f=f[:L]
F = _ntt(f,L,reverse=True)
inv = pow(L,mod-2,mod)
for i in range(L):
F[i] *= inv
F[i] %= mod
return F
def convolve(f,g,limit):
l = len(f)+len(g)-1
L = 1<<((l-1).bit_length())
F = ntt(f,L)
G = ntt(g,L)
H = [(F[i] * G[i]) % mod for i in range(L)]
h = intt(H,L)
return h[:limit]
inv2 = pow(2,mod-2,mod)
N,K = map(int,input().split())
M = list(map(int,input().split()))
c = 1
for m in M:
c *= m
c %= mod
M = [(M[i]+1)*inv2 % mod for i in range(N)]
Mi = [M[N-i-1] for i in range(N)]
conv = convolve(M,Mi,2*N)[N-1:]
check = [conv[i]*4 % mod for i in range(N)]
imos = [g2[i] for i in range(N)]
for i in range(1,N):
imos[i] += imos[i-1]
imos[i] %= mod
prod = [N-1 for i in range(K+1)]
for i in range(2,K+1):
prod[i] = (prod[i-1] * (N-i)) % mod
prod[0] = 0
imos_prod = [prod[i] for i in range(K+1)]
for i in range(1,K+1):
imos_prod[i] += imos_prod[i-1]
imos_prod[i] %= mod
res = imos_prod[K] * conv[N-1] % mod
for x in range(1,N-1):
L = 1
R = min(K,N-1-x)
tmp = g1[N-1-x] * (imos[N-1-x-L] - imos[N-1-x-R] + g2[N-1-x-R])
tmp2 = (imos_prod[K] - tmp) % mod
res += tmp2 * conv[x]
res %= mod
print(res*c % mod)