結果
問題 | No.1383 Numbers of Product |
ユーザー | Kazun |
提出日時 | 2021-02-07 22:50:49 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,576 bytes |
コンパイル時間 | 196 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 166,432 KB |
最終ジャッジ日時 | 2024-07-04 16:58:06 |
合計ジャッジ時間 | 18,147 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
54,528 KB |
testcase_01 | AC | 42 ms
54,656 KB |
testcase_02 | AC | 44 ms
54,656 KB |
testcase_03 | WA | - |
testcase_04 | AC | 42 ms
54,528 KB |
testcase_05 | WA | - |
testcase_06 | AC | 40 ms
54,400 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 428 ms
150,504 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 43 ms
54,400 KB |
testcase_18 | AC | 42 ms
54,016 KB |
testcase_19 | AC | 48 ms
54,656 KB |
testcase_20 | AC | 48 ms
54,144 KB |
testcase_21 | AC | 48 ms
54,016 KB |
testcase_22 | AC | 48 ms
54,272 KB |
testcase_23 | AC | 48 ms
54,016 KB |
testcase_24 | AC | 47 ms
54,272 KB |
testcase_25 | AC | 47 ms
54,400 KB |
testcase_26 | AC | 48 ms
54,400 KB |
testcase_27 | WA | - |
testcase_28 | AC | 68 ms
68,992 KB |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | AC | 44 ms
54,656 KB |
testcase_32 | AC | 143 ms
101,744 KB |
testcase_33 | WA | - |
testcase_34 | AC | 49 ms
56,064 KB |
testcase_35 | AC | 607 ms
161,944 KB |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | AC | 655 ms
166,308 KB |
testcase_40 | AC | 630 ms
166,052 KB |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | AC | 606 ms
165,924 KB |
testcase_45 | WA | - |
testcase_46 | AC | 42 ms
54,272 KB |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | WA | - |
testcase_51 | AC | 42 ms
54,400 KB |
testcase_52 | AC | 42 ms
54,272 KB |
ソースコード
#Miller-Rabinの素数判定法 def Miller_Rabin_Primality_Test(N,Times=20): """Miller-Rabinによる整数Nの素数判定を行う. N:整数 ※:Trueは正確にはProbably Trueである(Falseは確定False). """ from random import randint as ri if N==2: return True if N==1 or N%2==0: return False q=N-1 k=0 while q&1==0: k+=1 q>>=1 for _ in range(Times): m=ri(2,N-1) y=pow(m,q,N) if y==1: continue flag=True for i in range(k): if (y+1)%N==0: flag=False break y*=y y%=N if flag: return False return True #ポラード・ローアルゴリズムによって素因数を発見する #参考元:https://judge.yosupo.jp/submission/6131 def Find_Factor_Rho(N): if N==1: return 1 from math import gcd m=1<<(N.bit_length()//8+1) for c in range(1,99): f=lambda x:(x*x+c)%N y,r,q,g=2,1,1,1 while g==1: x=y for i in range(r): y=f(y) k=0 while k<r and g==1: for i in range(min(m, r - k)): y=f(y) q=q*abs(x - y)%N g=gcd(q,N) k+=m r <<=1 if g<N: if Miller_Rabin_Primality_Test(g): return g elif Miller_Rabin_Primality_Test(N//g): return N//g return N #ポラード・ローアルゴリズムによる素因数分解 #参考元:https://judge.yosupo.jp/submission/6131 def Pollard_Rho_Prime_Factorization(N): I=2 res=[] while I*I<=N: if N%I==0: k=0 while N%I==0: k+=1 N//=I res.append([I,k]) I+=1+(I%2) if I!=101 or N<2**20: continue while N>1: if Miller_Rabin_Primality_Test(N): res.append([N,1]) N=1 else: j=Find_Factor_Rho(N) k=0 while N%j==0: N//=j k+=1 res.append([j,k]) if N>1: res.append([N,1]) res.sort(key=lambda x:x[0]) return res #================================================ def General_Binary_Decrease_Search(L,R,cond,Integer=True,ep=1/(1<<20),Times=50): """条件式が単調減少であるとき,一般的な二部探索を行う. L:解の下限 R:解の上限 cond:条件(1変数関数,広義単調減少 or 広義単調減少を満たす) Integer:解を整数に制限するか? ep:Integer=Falseのとき,解の許容する誤差 """ if not(cond(L)): return None if cond(R): return R if Integer: L-=1 while R-L>1: C=L+(R-L)//2 if cond(C): L=C else: R=C return L else: while (R-L)>=ep and Times: Times-=1 C=L+(R-L)/2 if cond(C): L=C else: R=C return L def Floor_Root(a,k): """floor(a^(1/k)) を求める. a:非負整数 k:正の整数 """ assert 0<=a and 0<k if a==0: return 0 if k==1: return a #大体の値を求める. x=int(pow(a,1/k)) #増やす while pow(x+1,k)<=a: x+=1 #減らす while pow(x,k)>a: x-=1 return x #================================================ def f(x): D=K*K+4*N R=Floor_Root(D,2) if R**2!=D: return -1 b=(-K+R) if b%2==1: return -1 else: return b//2 #================================================ from collections import defaultdict N,K,M=map(int,input().split()) #B=1の解の範囲を求める. alpha=General_Binary_Decrease_Search(0,N,lambda x:x*(x+K)<=N) #B>=2の解を求める. F=defaultdict(int) a=1 while a*(a+K)*(a+2*K)<=N: p=a*(a+K)*(a+2*K) F[p]+=1 q=a+3*K while p*q<=N: p*=q F[p]+=1 q+=K a+=1 if M>=2: Ans=0 for n in F: b=0 t=f(n) if t!=-1 and 1<=t<=alpha: b=1 if F[n]+b==M: Ans+=1 else: Ans=0 beta=alpha for n in F: if F[n]==1: t=f(n) if t==-1 or not(1<=t<=alpha): Ans+=1 else: beta-=1 Ans+=beta print(Ans)