結果
| 問題 |
No.1383 Numbers of Product
|
| コンテスト | |
| ユーザー |
👑 Kazun
|
| 提出日時 | 2021-02-07 22:58:10 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 793 ms / 2,000 ms |
| コード長 | 4,681 bytes |
| コンパイル時間 | 393 ms |
| コンパイル使用メモリ | 82,256 KB |
| 実行使用メモリ | 168,472 KB |
| 最終ジャッジ日時 | 2024-11-22 23:23:15 |
| 合計ジャッジ時間 | 20,757 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 51 |
ソースコード
#Miller-Rabinの素数判定法
def Miller_Rabin_Primality_Test(N,Times=20):
"""Miller-Rabinによる整数Nの素数判定を行う.
N:整数
※:Trueは正確にはProbably Trueである(Falseは確定False).
"""
from random import randint as ri
if N==2:
return True
if N==1 or N%2==0:
return False
q=N-1
k=0
while q&1==0:
k+=1
q>>=1
for _ in range(Times):
m=ri(2,N-1)
y=pow(m,q,N)
if y==1:
continue
flag=True
for i in range(k):
if (y+1)%N==0:
flag=False
break
y*=y
y%=N
if flag:
return False
return True
#ポラード・ローアルゴリズムによって素因数を発見する
#参考元:https://judge.yosupo.jp/submission/6131
def Find_Factor_Rho(N):
if N==1:
return 1
from math import gcd
m=1<<(N.bit_length()//8+1)
for c in range(1,99):
f=lambda x:(x*x+c)%N
y,r,q,g=2,1,1,1
while g==1:
x=y
for i in range(r):
y=f(y)
k=0
while k<r and g==1:
for i in range(min(m, r - k)):
y=f(y)
q=q*abs(x - y)%N
g=gcd(q,N)
k+=m
r <<=1
if g<N:
if Miller_Rabin_Primality_Test(g):
return g
elif Miller_Rabin_Primality_Test(N//g):
return N//g
return N
#ポラード・ローアルゴリズムによる素因数分解
#参考元:https://judge.yosupo.jp/submission/6131
def Pollard_Rho_Prime_Factorization(N):
I=2
res=[]
while I*I<=N:
if N%I==0:
k=0
while N%I==0:
k+=1
N//=I
res.append([I,k])
I+=1+(I%2)
if I!=101 or N<2**20:
continue
while N>1:
if Miller_Rabin_Primality_Test(N):
res.append([N,1])
N=1
else:
j=Find_Factor_Rho(N)
k=0
while N%j==0:
N//=j
k+=1
res.append([j,k])
if N>1:
res.append([N,1])
res.sort(key=lambda x:x[0])
return res
#================================================
def General_Binary_Decrease_Search(L,R,cond,Integer=True,ep=1/(1<<20),Times=50):
"""条件式が単調減少であるとき,一般的な二部探索を行う.
L:解の下限
R:解の上限
cond:条件(1変数関数,広義単調減少 or 広義単調減少を満たす)
Integer:解を整数に制限するか?
ep:Integer=Falseのとき,解の許容する誤差
"""
if not(cond(L)):
return None
if cond(R):
return R
if Integer:
L-=1
while R-L>1:
C=L+(R-L)//2
if cond(C):
L=C
else:
R=C
return L
else:
while (R-L)>=ep and Times:
Times-=1
C=L+(R-L)/2
if cond(C):
L=C
else:
R=C
return L
def Floor_Root(a,k):
"""floor(a^(1/k)) を求める.
a:非負整数
k:正の整数
"""
assert 0<=a and 0<k
if a==0:
return 0
if k==1:
return a
#大体の値を求める.
x=int(pow(a,1/k))
#増やす
while pow(x+1,k)<=a:
x+=1
#減らす
while pow(x,k)>a:
x-=1
return x
#================================================
def f(x):
D=K*K+4*x
R=Floor_Root(D,2)
if R**2!=D:
return None
b=(-K+R)
if b%2==1:
return None
else:
return b//2
#================================================
from collections import defaultdict
N,K,M=map(int,input().split())
#B=1の解の範囲を求める.
alpha=General_Binary_Decrease_Search(0,N,lambda x:x*(x+K)<=N)
#B>=2の解を求める.
F=defaultdict(int)
a=1
while a*(a+K)*(a+2*K)<=N:
p=a*(a+K)*(a+2*K)
F[p]+=1
q=a+3*K
while p*q<=N:
p*=q
F[p]+=1
q+=K
a+=1
if M>=2:
Ans=0
for n in F:
b=0
t=f(n)
if t!=None and 1<=t<=alpha:
b=1
if F[n]+b==M:
Ans+=1
else:
Ans=0
beta=alpha
for n in F:
if F[n]==1:
t=f(n)
if t==None or not(1<=t<=alpha):
Ans+=1
else:
beta-=1
else:
t=f(n)
if t!=None and 1<=t<=alpha:
beta-=1
Ans+=beta
print(Ans)
Kazun