結果
| 問題 |
No.8046 yukicoderの過去問
|
| ユーザー |
|
| 提出日時 | 2021-02-10 01:45:57 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 539 ms / 2,000 ms |
| コード長 | 16,880 bytes |
| コンパイル時間 | 2,749 ms |
| コンパイル使用メモリ | 220,992 KB |
| 最終ジャッジ日時 | 2025-01-18 16:52:38 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 |
ソースコード
/*** author: yuji9511 ***/
#include <bits/stdc++.h>
// #include <atcoder/all>
// using namespace atcoder;
using namespace std;
using ll = long long;
using lpair = pair<ll, ll>;
using vll = vector<ll>;
const ll MOD = 1e9+7;
const ll INF = 1e18;
#define rep(i,m,n) for(ll i=(m);i<(n);i++)
#define rrep(i,m,n) for(ll i=(m);i>=(n);i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
ostream& operator<<(ostream& os, lpair& h){ os << "(" << h.first << ", " << h.second << ")"; return os;}
#define printa(x,n) for(ll i=0;i<n;i++){cout<<(x[i])<<" \n"[i==n-1];};
void print() {}
template <class H,class... T>
void print(H&& h, T&&... t){cout<<h<<" \n"[sizeof...(t)==0];print(forward<T>(t)...);}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
using mint = static_modint<1000000007>;
template<typename T>
struct FormalPowerSeries {
using Poly = vector<T>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
FormalPowerSeries(Conv conv) :conv(conv) {}
Poly pre(const Poly& as, int deg) {
return Poly(as.begin(), as.begin() + min((int)as.size(), deg));
}
Poly add(Poly as, Poly bs) {
int sz = max(as.size(), bs.size());
Poly cs(sz, T(0));
for (int i = 0; i < (int)as.size(); i++) cs[i] += as[i];
for (int i = 0; i < (int)bs.size(); i++) cs[i] += bs[i];
return cs;
}
Poly sub(Poly as, Poly bs) {
int sz = max(as.size(), bs.size());
Poly cs(sz, T(0));
for (int i = 0; i < (int)as.size(); i++) cs[i] += as[i];
for (int i = 0; i < (int)bs.size(); i++) cs[i] -= bs[i];
return cs;
}
Poly mul(Poly as, Poly bs) {
return conv(as, bs);
}
Poly mul(Poly as, T k) {
for (auto& a : as) a *= k;
return as;
}
// F(0) must not be 0
Poly inv(Poly as, int deg) {
assert(as[0] != T(0));
Poly rs({ T(1) / as[0] });
for (int i = 1; i < deg; i <<= 1)
rs = pre(sub(add(rs, rs), mul(mul(rs, rs), pre(as, i << 1))), i << 1);
return rs;
}
// not zero
Poly div(Poly as, Poly bs) {
while (as.back() == T(0)) as.pop_back();
while (bs.back() == T(0)) bs.pop_back();
if (bs.size() > as.size()) return Poly();
reverse(as.begin(), as.end());
reverse(bs.begin(), bs.end());
int need = as.size() - bs.size() + 1;
Poly ds = pre(mul(as, inv(bs, need)), need);
reverse(ds.begin(), ds.end());
return ds;
}
// F(0) must be 1
Poly sqrt(Poly as, int deg) {
assert(as[0] == T(1));
T inv2 = T(1) / T(2);
Poly ss({ T(1) });
for (int i = 1; i < deg; i <<= 1) {
ss = pre(add(ss, mul(pre(as, i << 1), inv(ss, i << 1))), i << 1);
for (T& x : ss) x *= inv2;
}
return ss;
}
Poly diff(Poly as) {
int n = as.size();
Poly res(n - 1);
for (int i = 1; i < n; i++) res[i - 1] = as[i] * T(i);
return res;
}
Poly integral(Poly as) {
int n = as.size();
Poly res(n + 1);
res[0] = T(0);
for (int i = 0; i < n; i++) res[i + 1] = as[i] / T(i + 1);
return res;
}
// F(0) must be 1
Poly log(Poly as, int deg) {
return pre(integral(mul(diff(as), inv(as, deg))), deg);
}
// F(0) must be 0
Poly exp(Poly as, int deg) {
Poly f({ T(1) });
as[0] += T(1);
for (int i = 1; i < deg; i <<= 1)
f = pre(mul(f, sub(pre(as, i << 1), log(f, i << 1))), i << 1);
return f;
}
Poly partition(int n) {
Poly rs(n + 1);
rs[0] = T(1);
for (int k = 1; k <= n; k++) {
if (1LL * k * (3 * k + 1) / 2 <= n) rs[k * (3 * k + 1) / 2] += T(k % 2 ? -1LL : 1LL);
if (1LL * k * (3 * k - 1) / 2 <= n) rs[k * (3 * k - 1) / 2] += T(k % 2 ? -1LL : 1LL);
}
return inv(rs, n + 1);
}
};
#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)
template<class T> T extgcd(T a, T b, T& x, T& y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b -= q * a, a); } return b; }
template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }
ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }
struct MathsNTTModAny {
template<int mod, int primitive_root>
class NTT {
public:
int get_mod() const { return mod; }
void _ntt(vector<ll>& a, int sign) {
const int n = sz(a);
assert((n ^ (n & -n)) == 0); //n = 2^k
const int g = 3; //g is primitive root of mod
int h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1
if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod
//bit reverse
int i = 0;
for (int j = 1; j < n - 1; ++j) {
for (int k = n >> 1; k > (i ^= k); k >>= 1);
if (j < i) swap(a[i], a[j]);
}
for (int m = 1; m < n; m *= 2) {
const int m2 = 2 * m;
const ll base = mod_pow(h, n / m2, mod);
ll w = 1;
FOR(x, m) {
for (int s = x; s < n; s += m2) {
ll u = a[s];
ll d = a[s + m] * w % mod;
a[s] = u + d;
if (a[s] >= mod) a[s] -= mod;
a[s + m] = u - d;
if (a[s + m] < 0) a[s + m] += mod;
}
w = w * base % mod;
}
}
for (auto& x : a) if (x < 0) x += mod;
}
void ntt(vector<ll>& input) {
_ntt(input, 1);
}
void intt(vector<ll>& input) {
_ntt(input, -1);
const int n_inv = mod_inv(sz(input), mod);
for (auto& x : input) x = x * n_inv % mod;
}
vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
int ntt_size = 1;
while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;
vector<ll> _a = a, _b = b;
_a.resize(ntt_size); _b.resize(ntt_size);
ntt(_a);
ntt(_b);
FOR(i, ntt_size) {
(_a[i] *= _b[i]) %= mod;
}
intt(_a);
return _a;
}
};
ll garner(vector<pair<int, int>> mr, int mod) {
mr.emplace_back(mod, 0);
vector<ll> coffs(sz(mr), 1);
vector<ll> constants(sz(mr), 0);
FOR(i, sz(mr) - 1) {
// coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first)
ll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;
if (v < 0) v += mr[i].first;
for (int j = i + 1; j < sz(mr); j++) {
(constants[j] += coffs[j] * v) %= mr[j].first;
(coffs[j] *= mr[i].first) %= mr[j].first;
}
}
return constants[sz(mr) - 1];
}
typedef NTT<167772161, 3> NTT_1;
typedef NTT<469762049, 3> NTT_2;
typedef NTT<1224736769, 3> NTT_3;
vector<ll> solve(vector<ll> a, vector<ll> b, int mod = 1000000007) {
for (auto& x : a) x %= mod;
for (auto& x : b) x %= mod;
NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod());
auto x = ntt1.convolution(a, b);
auto y = ntt2.convolution(a, b);
auto z = ntt3.convolution(a, b);
const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod();
const ll m1_inv_m2 = mod_inv<ll>(m1, m2);
const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3);
const ll m12_mod = m1 * m2 % mod;
vector<ll> ret(sz(x));
FOR(i, sz(x)) {
ll v1 = (y[i] - x[i]) * m1_inv_m2 % m2;
if (v1 < 0) v1 += m2;
ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3;
if (v2 < 0) v2 += m3;
ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod;
if (constants3 < 0) constants3 += mod;
ret[i] = constants3;
}
return ret;
}
vector<int> solve(vector<int> a, vector<int> b, int mod = 1000000007) {
vector<ll> x(all(a));
vector<ll> y(all(b));
auto z = solve(x, y, mod);
vector<int> res;
fore(aa, z) res.push_back(aa % mod);
return res;
}
vector<mint> solve(vector<mint> a, vector<mint> b, int mod = 1000000007) {
int n = a.size();
vector<ll> x(n);
rep(i, 0, n) x[i] = a[i].val();
n = b.size();
vector<ll> y(n);
rep(i, 0, n) y[i] = b[i].val();
auto z = solve(x, y, mod);
vector<int> res;
fore(aa, z) res.push_back(aa % mod);
vector<mint> res2;
fore(x, res) res2.push_back(x);
return res2;
}
};
void solve(){
ll K,N;
cin >> K >> N;
vll x(N);
rep(i,0,N) cin >> x[i];
FormalPowerSeries<mint> FPS([&](auto a, auto b) {
MathsNTTModAny ntt;
return ntt.solve(a, b);
});
vector<mint> f(K+1, 0);
f[0] = 1;
rep(i,0,N) f[x[i]] = -1;
f = FPS.inv(f, K+1);
print(f[K].val());
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
solve();
}