結果
問題 | No.1392 Don't be together |
ユーザー | LayCurse |
提出日時 | 2021-02-12 21:47:15 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 187 ms / 2,000 ms |
コード長 | 21,660 bytes |
コンパイル時間 | 2,607 ms |
コンパイル使用メモリ | 220,040 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-19 20:56:44 |
合計ジャッジ時間 | 5,303 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 83 ms
5,376 KB |
testcase_07 | AC | 127 ms
5,376 KB |
testcase_08 | AC | 126 ms
5,376 KB |
testcase_09 | AC | 187 ms
5,376 KB |
testcase_10 | AC | 75 ms
5,376 KB |
testcase_11 | AC | 120 ms
5,376 KB |
testcase_12 | AC | 71 ms
5,376 KB |
testcase_13 | AC | 99 ms
5,376 KB |
testcase_14 | AC | 109 ms
5,376 KB |
testcase_15 | AC | 74 ms
5,376 KB |
testcase_16 | AC | 118 ms
5,376 KB |
testcase_17 | AC | 80 ms
5,376 KB |
testcase_18 | AC | 107 ms
5,376 KB |
testcase_19 | AC | 95 ms
5,376 KB |
testcase_20 | AC | 43 ms
5,376 KB |
testcase_21 | AC | 16 ms
5,376 KB |
testcase_22 | AC | 66 ms
5,376 KB |
testcase_23 | AC | 44 ms
5,376 KB |
testcase_24 | AC | 26 ms
5,376 KB |
testcase_25 | AC | 50 ms
5,376 KB |
testcase_26 | AC | 15 ms
5,376 KB |
testcase_27 | AC | 19 ms
5,376 KB |
testcase_28 | AC | 53 ms
5,376 KB |
testcase_29 | AC | 29 ms
5,376 KB |
コンパイルメッセージ
In destructor 'Permutation::~Permutation()', inlined from 'int main()' at main.cpp:1039:1: main.cpp:815:17: warning: 'P.Permutation::dat' may be used uninitialized [-Wmaybe-uninitialized] 815 | delete [] dat; | ^~~ main.cpp: In function 'int main()': main.cpp:1017:15: note: 'P.Permutation::dat' was declared here 1017 | Permutation P(N); | ^
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (998244353U) void*wmem; char memarr[96000000]; template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){ walloc1d(arr, x2-x1, mem); (*arr) -= x1; } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class S, class T> inline S chmax(S &a, T b){ if(a<b){ a=b; } return a; } template<class T> struct Comb{ int mem_fact; T*factri; T*ifactri; int mem_dfact; T*dfactri; int mem_pw2; int mem_pw3; int mem_pw10; int mem_rep1; T*pw2c; T*pw3c; T*pw10c; T*rep1c; int mem_ipw2; int mem_ipw3; int mem_ipw10; T*ipw2c; T*ipw3c; T*ipw10c; Comb(){ mem_fact = 0; mem_dfact = 0; mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0; mem_ipw2 = mem_ipw3 = mem_ipw10 = 0; } inline void expand_fact(int k){ int i; if(k <= mem_fact){ return; } chmax(k, 2 * mem_fact); if(mem_fact == 0){ factri = (T*)malloc(k * sizeof(T)); ifactri = (T*)malloc(k * sizeof(T)); factri[0] = 1; for(i=(1);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(0);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } else{ factri = (T*)realloc(factri, k * sizeof(T)); ifactri = (T*)realloc(ifactri, k * sizeof(T)); for(i=(mem_fact);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(mem_fact);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } mem_fact = k; } inline T fac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return factri[k]; } inline T ifac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return ifactri[k]; } inline T C(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[b] * ifactri[a-b]; } inline T P(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[a-b]; } inline T H(int a, int b){ if(a==0 && b==0){ return 1; } if(a <= 0 || b < 0){ return 0; } if(mem_fact < a+b){ expand_fact(a+b); } return C(a+b-1, b); } inline T Multinomial(int sz, int a[]){ int i; int s = 0; T res; for(i=(0);i<(sz);i++){ s += a[i]; } if(mem_fact < s+1){ expand_fact(s+1); } res = factri[s]; for(i=(0);i<(sz);i++){ res *= ifactri[a[i]]; } return 1; } inline T Multinomial(int a){ return 1; } inline T Multinomial(int a, int b){ if(mem_fact < a+b+1){ expand_fact(a+b+1); } return factri[a+b] * ifactri[a] * ifactri[b]; } inline T Multinomial(int a, int b, int c){ if(mem_fact < a+b+c+1){ expand_fact(a+b+c+1); } return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c]; } inline T Multinomial(int a, int b, int c, int d){ if(mem_fact < a+b+c+d+1){ expand_fact(a+b+c+d+1); } return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d]; } inline T Catalan(int n){ if(n < 0){ return 0; } if(mem_fact < 2*n+1){ expand_fact(2*n+1); } return factri[2*n] * ifactri[n] * ifactri[n+1]; } inline T C_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } if(b > a - b){ b = a - b; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; res /= i + 1; } return res; } inline T P_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; } return res; } inline T per_s(long long n, long long k){ T d; int m; if(n < 0 || k < 0){ return 0; } if(n == k && k == 0){ return 1; } if(n == 0 || k == 0){ return 0; } if(k==1){ return 1; } if(k==2){ d = n / 2; return d; } if(k==3){ d = (n-1) / 6; m = (n-1) % 6; if(m==0){ return 3 * d * d + d; } if(m==1){ return 3 * d * d + 2 * d; } if(m==2){ return 3 * d * d + 3 * d + 1; } if(m==3){ return 3 * d * d + 4 * d + 1; } if(m==4){ return 3 * d * d + 5 * d + 2; } if(m==5){ return 3 * d * d + 6 * d + 3; } } assert(0 && "per_s should be k <= 3"); return -1; } inline void expand_dfact(int k){ int i; if(k <= mem_dfact){ return; } chmax(k, 3); chmax(k, 2 * mem_dfact); if(mem_dfact==0){ dfactri = (T*)malloc(k * sizeof(T)); dfactri[0] = dfactri[1] = 1; for(i=(2);i<(k);i++){ dfactri[i] = i * dfactri[i-2]; } } else{ dfactri = (T*)realloc(dfactri, k * sizeof(T)); for(i=(mem_dfact);i<(k);i++){ dfactri[i] = i * dfactri[i-2]; } } mem_dfact = k; } inline void expand_pw2(int k){ int i; if(k <= mem_pw2){ return; } chmax(k, 2 * mem_pw2); if(mem_pw2==0){ pw2c = (T*)malloc(k * sizeof(T)); pw2c[0] = 1; for(i=(1);i<(k);i++){ pw2c[i] = 2 * pw2c[i-1]; } } else{ pw2c = (T*)realloc(pw2c, k * sizeof(T)); for(i=(mem_pw2);i<(k);i++){ pw2c[i] = 2 * pw2c[i-1]; } } mem_pw2 = k; } inline void expand_ipw2(int k){ int i; if(k <= mem_ipw2){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw2); if(mem_ipw2==0){ ipw2c = (T*)malloc(k * sizeof(T)); ipw2c[0] = 1; ipw2c[1] = ipw2c[0] / 2; for(i=(1);i<(k);i++){ ipw2c[i] = ipw2c[1] * ipw2c[i-1]; } } else{ ipw2c = (T*)realloc(ipw2c, k * sizeof(T)); for(i=(mem_ipw2);i<(k);i++){ ipw2c[i] = ipw2c[1] * ipw2c[i-1]; } } mem_ipw2 = k; } inline void expand_pw3(int k){ int i; if(k <= mem_pw3){ return; } chmax(k, 2 * mem_pw3); if(mem_pw3==0){ pw3c = (T*)malloc(k * sizeof(T)); pw3c[0] = 1; for(i=(1);i<(k);i++){ pw3c[i] = 3 * pw3c[i-1]; } } else{ pw3c = (T*)realloc(pw3c, k * sizeof(T)); for(i=(mem_pw3);i<(k);i++){ pw3c[i] = 3 * pw3c[i-1]; } } mem_pw3 = k; } inline void expand_ipw3(int k){ int i; if(k <= mem_ipw3){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw3); if(mem_ipw3==0){ ipw3c = (T*)malloc(k * sizeof(T)); ipw3c[0] = 1; ipw3c[1] = ipw3c[0] / 3; for(i=(1);i<(k);i++){ ipw3c[i] = ipw3c[1] * ipw3c[i-1]; } } else{ ipw3c = (T*)realloc(ipw3c, k * sizeof(T)); for(i=(mem_ipw3);i<(k);i++){ ipw3c[i] = ipw3c[1] * ipw3c[i-1]; } } mem_ipw3 = k; } inline void expand_pw10(int k){ int i; if(k <= mem_pw10){ return; } chmax(k, 2 * mem_pw10); if(mem_pw10==0){ pw10c = (T*)malloc(k * sizeof(T)); pw10c[0] = 1; for(i=(1);i<(k);i++){ pw10c[i] = 10 * pw10c[i-1]; } } else{ pw10c = (T*)realloc(pw10c, k * sizeof(T)); for(i=(mem_pw10);i<(k);i++){ pw10c[i] = 10 * pw10c[i-1]; } } mem_pw10 = k; } inline void expand_ipw10(int k){ int i; if(k <= mem_ipw10){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw10); if(mem_ipw10==0){ ipw10c = (T*)malloc(k * sizeof(T)); ipw10c[0] = 1; ipw10c[1] = ipw10c[0] / 10; for(i=(1);i<(k);i++){ ipw10c[i] = ipw10c[1] * ipw10c[i-1]; } } else{ ipw10c = (T*)realloc(ipw10c, k * sizeof(T)); for(i=(mem_ipw10);i<(k);i++){ ipw10c[i] = ipw10c[1] * ipw10c[i-1]; } } mem_ipw10 = k; } inline void expand_rep1(int k){ int i; if(k <= mem_rep1){ return; } chmax(k, 2 * mem_rep1); if(mem_rep1==0){ rep1c = (T*)malloc(k * sizeof(T)); rep1c[0] = 0; for(i=(1);i<(k);i++){ rep1c[i] = 10 * rep1c[i-1] + 1; } } else{ rep1c = (T*)realloc(rep1c, k * sizeof(T)); for(i=(mem_rep1);i<(k);i++){ rep1c[i] = 10 * rep1c[i-1] + 1; } } mem_rep1 = k; } inline T dfac(int k){ if(k >= 0){ if(mem_dfact < k+1){ expand_dfact(k+1); } return dfactri[k]; } if(k==-1){ return 1; } k = - k - 2; if(k % 4 == 1){ return 1 / (-dfac(k)); } return 1 / dfac(k); } inline T pw2(int k){ if(k >= 0){ if(mem_pw2 < k+1){ expand_pw2(k+1); } return pw2c[k]; } else{ k = -k; if(mem_ipw2 < k+1){ expand_ipw2(k+1); } return ipw2c[k]; } } inline T pw3(int k){ if(k >= 0){ if(mem_pw3 < k+1){ expand_pw3(k+1); } return pw3c[k]; } else{ k = -k; if(mem_ipw3 < k+1){ expand_ipw3(k+1); } return ipw3c[k]; } } inline T pw10(int k){ if(k >= 0){ if(mem_pw10 < k+1){ expand_pw10(k+1); } return pw10c[k]; } else{ k = -k; if(mem_ipw10 < k+1){ expand_ipw10(k+1); } return ipw10c[k]; } } inline T repunit(int k){ if(mem_rep1 < k+1){ expand_rep1(k+1); } return rep1c[k]; } } ; template<> inline Modint Comb<Modint>::C_s(long long a, long long b){ long long i; Modint res; Modint d; if(b < 0 || b > a){ return 0; } if(b > a - b){ b = a - b; } res = d = 1; for(i=(0);i<(b);i++){ res *= a - i; d *= i + 1; } return res / d; } template<class T> struct fenwick{ int size; int memory; T*data; void malloc(int mem); void malloc(int mem, int fg); void walloc(int mem, void **workMemory = &wmem); void walloc(int mem, int fg, void **workMemory = &wmem); void free(void); void init(int N); void add(int k, T val); T get(int k); T range(int a, int b); int kth(T k); } ; struct Permutation{ int n; int mem; int*dat; Permutation(){ n = mem = 0; } Permutation(const int nn){ n = mem = nn; if(mem > 0){ dat = new int[mem]; } } Permutation(const Permutation &a){ int i; mem = n = a.n; dat = new int[mem]; for(i=(0);i<(mem);i++){ dat[i] = a.dat[i]; } } ~Permutation(){ if(mem){ delete [] dat; } } void changeSize(const int nn){ n = nn; if(mem < n){ if(mem){ delete [] dat; } mem = n; dat = new int[mem]; } } Permutation& operator=(const Permutation &a){ int i; changeSize(a.n); n = a.n; for(i=(0);i<(n);i++){ dat[i] = a.dat[i]; } return *this; } Permutation& operator=(const int a){ int i; for(i=(0);i<(n);i++){ dat[i] = i; } return *this; } Permutation& operator*=(const Permutation &a){ int i; int*m; void*mv = wmem; if(n==0 || n!=a.n){ changeSize(0); return *this; } walloc1d(&m, n, &mv); for(i=(0);i<(n);i++){ m[i] = dat[a.dat[i]]; } for(i=(0);i<(n);i++){ dat[i] = m[i]; } return *this; } Permutation operator*(const Permutation &a){ return Permutation(*this) *= a; } bool operator==(const Permutation &a){ int i; if(n != a.n){ return false; } for(i=(0);i<(n);i++){ if(dat[i] != a.dat[i]){ return false; } } return true; } template<class T> void apply(T A[]){ int i; T*B; void*mv = wmem; walloc1d(&B, n, &mv); for(i=(0);i<(n);i++){ B[dat[i]] = A[i]; } for(i=(0);i<(n);i++){ A[i] = B[i]; } } template<class T> void apply(T A[], T B[]){ int i; for(i=(0);i<(n);i++){ B[dat[i]] = A[i]; } } int cycle_len(int res[] = NULL){ int i; int j; int k; int sz = 0; int*vis; void*mv = wmem; if(res==NULL){ walloc1d(&res, n, &mv); } walloc1d(&vis, n, &mv); for(i=(0);i<(n);i++){ vis[i] = 0; } for(i=(0);i<(n);i++){ if(!vis[i]){ k = 0; j = i; while(vis[j]==0){ vis[j] = 1; j = dat[j]; k++; } res[sz++] = k; } } return sz; } void cycle_len_EachElement(int res[]){ int i; int j; int k; int sz = 0; int*vis; void*mv = wmem; walloc1d(&vis, n, &mv); for(i=(0);i<(n);i++){ vis[i] = 0; } for(i=(0);i<(n);i++){ if(!vis[i]){ k = 0; j = i; while(vis[j]==0){ vis[j] = 1; j = dat[j]; k++; } j = i; while(vis[j]==1){ res[j] = k; vis[j] = 2; j = dat[j]; } } } } template<class T> inline T getIndex(void *mem = wmem){ int i; fenwick<int> t; T res; T*fac; walloc1d(&fac,n,&mem); fac[0] = 1; for(i=(1);i<(n);i++){ fac[i] = i * fac[i-1]; } t.walloc(n,&mem); t.init(n); for(i=(0);i<(n);i++){ t.add(i,1); } res = 0; for(i=(0);i<(n);i++){ t.add(dat[i], -1); res += fac[n-1-i] * t.get(dat[i]-1); } return res; } inline int& operator[](const int a){ return dat[a]; } } ; template<class S> inline Permutation pow_L(Permutation a, S b){ Permutation res; res.changeSize(a.n); res = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } int sz; int len[5000]; Modint dp[2][5001]; Modint solve(int N, int M){ int i; Modint res = 1; if(M <= 0){ return 0; } dp[1][1] = M; for(i=(2);i<(N+1);i++){ dp[0][i] = dp[0][i-1] * (M-2) + dp[1][i-1] * (M-1); dp[1][i] = dp[0][i-1]; } for(i=(0);i<(sz);i++){ res *= dp[0][len[i]]; } return res; } int main(){ int i; wmem = memarr; int N; rd(N); int M; rd(M); Permutation P(N); Comb<Modint> c; Modint res = 0; { int cTE1_r3A; for(cTE1_r3A=(0);cTE1_r3A<(N);cTE1_r3A++){ rd(P[cTE1_r3A]);P[cTE1_r3A] += (-1); } } sz = P.cycle_len(len); for(i=(0);i<(M);i++){ if(i%2==0){ res += solve(N,M-i) * c.C(M,i); } else{ res -= solve(N,M-i) * c.C(M,i); } } res *= c.ifac(M); wt_L(res); wt_L('\n'); return 0; } template<class T> void fenwick<T>::malloc(int mem){ memory = mem; data = (T*)std::malloc(sizeof(T)*mem); } template<class T> void fenwick<T>::malloc(int mem, int fg){ memory = mem; data = (T*)std::malloc(sizeof(T)*mem); if(fg){ init(mem); } } template<class T> void fenwick<T>::walloc(int mem, void **workMemory /* = &wmem*/){ memory = mem; walloc1d(&data, mem, workMemory); } template<class T> void fenwick<T>::walloc(int mem, int fg, void **workMemory /* = &wmem*/){ memory = mem; walloc1d(&data, mem, workMemory); if(fg){ init(mem); } } template<class T> void fenwick<T>::free(void){ memory = 0; free(data); } template<class T> void fenwick<T>::init(int N){ size = N; memset(data,0,sizeof(T)*N); } template<class T> void fenwick<T>::add(int k, T val){ while(k < size){ data[k] += val; k |= k+1; } } template<class T> T fenwick<T>::get(int k){ T res = 0; while(k>=0){ res += data[k]; k = (k&(k+1))-1; } return res; } template<class T> T fenwick<T>::range(int a, int b){ if(b==-1){ b=size-1; } return get(b) - get(a-1); } template<class T> int fenwick<T>::kth(T k){ int i=0; int j=size; int c; T v; while(i<j){ c = (i+j)/2; v = get(c); if(v <= k){ i=c+1; } else{ j=c; } } return i==size?-1:i; } // cLay version 20210103-1 [bug fixed 2] // --- original code --- // #define MD 998244353 // int sz, len[5000]; // Modint dp[2][5001]; // // Modint solve(int N, int M){ // Modint res = 1; // if(M <= 0) return 0; // dp[1][1] = M; // rep(i,2,N+1){ // dp[0][i] = dp[0][i-1] * (M-2) + dp[1][i-1] * (M-1); // dp[1][i] = dp[0][i-1]; // } // rep(i,sz) res *= dp[0][len[i]]; // return res; // } // // { // int @N, @M; // Permutation P(N); // Comb<Modint> c; // Modint res = 0; // rd((P--)(N)); // sz = P.cycle_len(len); // // rep(i,M){ // if(i%2==0) res += solve(N,M-i) * c.C(M,i); // else res -= solve(N,M-i) * c.C(M,i); // } // res *= c.ifac(M); // wt(res); // }