結果

問題 No.1391 ±1 Abs Sum
ユーザー rniya
提出日時 2021-02-12 21:49:08
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 991 ms / 2,000 ms
コード長 8,910 bytes
コンパイル時間 3,249 ms
コンパイル使用メモリ 212,208 KB
最終ジャッジ日時 2025-01-18 18:20:39
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(), (x).end()
template <typename T> istream& operator>>(istream& is, vector<T>& v) {
for (T& x : v) is >> x;
return is;
}
template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 == (int)v.size() ? "" : " ");
}
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {
os << '(' << p.first << ',' << p.second << ')';
return os;
}
template <typename T, typename U, typename V> ostream& operator<<(ostream& os, const tuple<T, U, V>& t) {
os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')';
return os;
}
template <typename T, typename U, typename V, typename W> ostream& operator<<(ostream& os, const tuple<T, U, V, W>& t) {
os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')';
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {
os << '{';
for (auto itr = m.begin(); itr != m.end();) {
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr != m.end()) os << ',';
}
os << '}';
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {
os << '{';
for (auto itr = m.begin(); itr != m.end();) {
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr != m.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const set<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 == (int)v.size() ? "" : " ");
}
return os;
}
void debug_out() { cerr << '\n'; }
template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {
cerr << head;
if (sizeof...(Tail) > 0) cerr << ", ";
debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) \
cerr << " "; \
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \
cerr << " "; \
debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }
template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }
template <class T1, class T2> inline bool chmin(T1& a, T2 b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T1, class T2> inline bool chmax(T1& a, T2 b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#pragma endregion
/**
* @brief Lazy Segment Tree
* @docs docs/datastructure/LazySegmentTree.md
*/
template <typename Monoid, typename OperatorMonoid> struct LazySegmentTree {
typedef function<Monoid(Monoid, Monoid)> F;
typedef function<Monoid(Monoid, OperatorMonoid)> G;
typedef function<OperatorMonoid(OperatorMonoid, OperatorMonoid)> H;
int n, hi;
F f;
G g;
H h;
Monoid id0;
OperatorMonoid id1;
vector<Monoid> dat;
vector<OperatorMonoid> laz;
LazySegmentTree(int n_, F f, G g, H h, Monoid id0, OperatorMonoid id1) : f(f), g(g), h(h), id0(id0), id1(id1) {
init(n_);
}
void init(int n_) {
n = 1, hi = 0;
while (n < n_) n <<= 1, hi++;
dat.assign(n << 1, id0);
laz.assign(n << 1, id1);
}
void build(const vector<Monoid>& v) {
for (int i = 0; i < (int)v.size(); i++) dat[i + n] = v[i];
for (int i = n - 1; i; --i) dat[i] = f(dat[i << 1 | 0], dat[i << 1 | 1]);
}
inline Monoid reflect(int k) { return laz[k] == id1 ? dat[k] : g(dat[k], laz[k]); }
inline void propagate(int k) {
if (laz[k] == id1) return;
laz[k << 1 | 0] = h(laz[k << 1 | 0], laz[k]);
laz[k << 1 | 1] = h(laz[k << 1 | 1], laz[k]);
dat[k] = reflect(k);
laz[k] = id1;
}
inline void thrust(int k) {
for (int i = hi; i; i--) propagate(k >> i);
}
inline void recalc(int k) {
while (k >>= 1) dat[k] = f(reflect(k << 1 | 0), reflect(k << 1 | 1));
}
void update(int a, int b, OperatorMonoid x) {
if (a >= b) return;
thrust(a += n);
thrust(b += n - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) laz[l] = h(laz[l], x), ++l;
if (r & 1) --r, laz[r] = h(laz[r], x);
}
recalc(a);
recalc(b);
}
void set_val(int k, Monoid x) {
thrust(k += n);
dat[k] = x, laz[k] = id1;
recalc(k);
}
Monoid query(int a, int b) {
if (a >= b) return id0;
thrust(a += n);
thrust(b += n - 1);
Monoid vl = id0, vr = id0;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = f(vl, reflect(l++));
if (r & 1) vr = f(reflect(--r), vr);
}
return f(vl, vr);
}
template <typename C> int find_subtree(int k, const C& check, Monoid& M, bool type) {
while (k < n) {
propagate(k);
Monoid nxt = type ? f(reflect(k << 1 | type), M) : f(M, reflect(k << 1 | type));
if (check(nxt))
k = k << 1 | type;
else
M = nxt, k = k << 1 | (type ^ 1);
}
return k - n;
}
// min i s.t. f(seg[a],seg[a+1],...,seg[i]) satisfy "check"
template <typename C> int find_first(int a, const C& check) {
Monoid L = id0;
if (a <= 0) {
if (check(f(L, reflect(1)))) return find_subtree(1, check, L, false);
return -1;
}
thrust(a + n);
int b = n;
for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {
if (l & 1) {
Monoid nxt = f(L, reflect(l));
if (check(nxt)) return find_subtree(l, check, L, false);
L = nxt;
l++;
}
}
return -1;
}
// max i s.t. f(seg[i],...,seg[b-2],seg[b-1]) satisfy "check"
template <typename C> int find_last(int b, const C& check) {
Monoid R = id0;
if (b >= n) {
if (check(f(reflect(1), R))) return find_subtree(1, check, R, true);
return -1;
}
thrust(b + n - 1);
int a = n;
for (int l = a, r = b + n; l < r; l >>= 1, r >>= 1) {
if (r & 1) {
Monoid nxt = f(reflect(--r), R);
if (check(nxt)) return find_subtree(r, check, R, true);
R = nxt;
}
}
return -1;
}
Monoid operator[](int i) { return query(i, i + 1); }
};
const int INF = 1e9;
const long long IINF = 1e18;
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const char dir[4] = {'D', 'R', 'U', 'L'};
const long long MOD = 1000000007;
// const long long MOD = 998244353;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, K;
cin >> N >> K;
vector<int> A(N);
cin >> A;
struct node {
ll a, b;
node(ll a, ll b) : a(a), b(b) {}
};
auto f = [](node a, node b) { return node(a.a + b.a, a.b + b.b); };
auto g = [](node a, ll x) { return node(a.a + x * a.b, a.b); };
auto h = [](ll a, ll b) { return a + b; };
LazySegmentTree<node, ll> seg(N, f, g, h, node(0, 0), 0);
for (int i = 0; i < N; i++) seg.set_val(i, node(A[i] - A[0], 1));
ll ans = IINF;
for (int i = 0, l = 0, r = K; i < N; i++) {
while (r < N && seg[r].a <= seg[l].a) r++, l++;
chmin(ans, -seg.query(0, N).a + 2 * seg.query(l, r).a);
if (i == N - 1) break;
seg.update(0, i + 1, A[i + 1] - A[i]);
seg.update(i + 1, N, -(A[i + 1] - A[i]));
}
cout << ans << '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0