結果
問題 | No.1393 Median of Walk |
ユーザー | ttttan2 |
提出日時 | 2021-02-12 22:59:59 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 60,490 bytes |
コンパイル時間 | 4,046 ms |
コンパイル使用メモリ | 237,124 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-20 00:19:47 |
合計ジャッジ時間 | 5,608 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | AC | 8 ms
5,376 KB |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 4 ms
5,376 KB |
testcase_29 | AC | 7 ms
5,376 KB |
testcase_30 | AC | 9 ms
5,376 KB |
testcase_31 | AC | 9 ms
5,376 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | AC | 5 ms
5,376 KB |
testcase_36 | WA | - |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 5 ms
5,376 KB |
testcase_39 | AC | 4 ms
5,376 KB |
testcase_40 | AC | 10 ms
5,376 KB |
testcase_41 | AC | 4 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h> //ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); //clock_t start=clock();clock_t end=clock();cout<<(double)(end-start)/CLOCKS_PER_SEC<<endl; using namespace std; typedef long long ll; typedef unsigned long long ull; typedef unsigned int ui; typedef pair<int,int> pii; typedef pair<pii,int> ppii; typedef pair<int,pii> pipi; typedef pair<ll,ll> pll; typedef pair<pll,ll> ppll; typedef pair<ll,pll> plpl; typedef pair<pii,pii> pippi; typedef tuple<ll,ll,ll> tl; typedef pair<double,double> pdd; typedef vector<vector<ll>> mat; ll mod=1000000007; ll mod2=998244353; ll mod3=1000003; ll mod4=998244853; ll mod5=1000000009; ll inf=numeric_limits<ll>::max()/2; int iinf=numeric_limits<int>::max()/2; double pi=3.14159265358979323846; double pi2=pi/2.0; double eps=1e-8; #define rep(i,m,n) for(ll i=m;i<n;i++) #define rrep(i,n,m) for(ll i=n;i>=m;i--) #define srep(itr,st) for(auto itr=st.begin();itr!=st.end();itr++) #define mrep(itr,mp) for(auto& itr:mp) #define Max(a,b) a=max(a,b) #define Min(a,b) a=min(a,b) int dh[4]={1,0,-1,0}; int dw[4]={0,1,0,-1}; int ddh[8]={-1,-1,-1,0,0,1,1,1}; int ddw[8]={-1,0,1,-1,1,-1,0,1}; struct custom_hash { static uint64_t splitmix64(uint64_t x) { // http://xorshift.di.unimi.it/splitmix64.c x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; #define umh unordered_map<int,int,custom_hash> ll gcd(ll a,ll b){ if(a<0)a=-a; if(b<0)b=-b; if(a<b)swap(a,b); if(b==0)return a; if(a%b==0)return b; return gcd(b,a%b); } ll lcm(ll a,ll b){ ll c=gcd(a,b); return a*b/c; } ll Pow(ll n,ll k){ if(k<0)return 0; ll ret=1; ll now=n; while(k>0){ if(k&1)ret*=now; now*=now; k/=2; } return ret; } ll beki(ll n,ll k,ll md){ ll ret=1; ll now=n; now%=md; while(k>0){ if(k%2==1){ ret*=now; ret%=md; } now*=now; now%=md; k/=2; } return ret; } ll gyaku(ll n,ll md){ return beki(n,md-2,md); } ll popcount(ll n){ ll ret=0; ll u=n; while(u>0){ ret+=u%2; u/=2; } return ret; } #ifndef ATCODER_INTERNAL_BITOP_HPP #define ATCODER_INTERNAL_BITOP_HPP 1 #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } } #endif #ifndef ATCODER_INTERNAL_MATH_HPP #define ATCODER_INTERNAL_MATH_HPP 1 #include <utility> namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } } #endif #ifndef ATCODER_INTERNAL_QUEUE_HPP #define ATCODER_INTERNAL_QUEUE_HPP 1 #include <vector> namespace atcoder { namespace internal { template <class T> struct simple_queue { std::vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } } #endif #ifndef ATCODER_INTERNAL_SCC_HPP #define ATCODER_INTERNAL_SCC_HPP 1 #include <algorithm> #include <utility> #include <vector> namespace atcoder { namespace internal { template <class E> struct csr { std::vector<int> start; std::vector<E> elist; csr(int n, const std::vector<std::pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; struct scc_graph { public: scc_graph(int n) : _n(n) {} int num_vertices() { return _n; } void add_edge(int from, int to) { edges.push_back({from, {to}}); } std::pair<int, std::vector<int>> scc_ids() { auto g = csr<edge>(_n, edges); int now_ord = 0, group_num = 0; std::vector<int> visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto to = g.elist[i].to; if (ord[to] == -1) { self(self, to); low[v] = std::min(low[v], low[to]); } else { low[v] = std::min(low[v], ord[to]); } } if (low[v] == ord[v]) { while (true) { int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if (u == v) break; } group_num++; } }; for (int i = 0; i < _n; i++) { if (ord[i] == -1) dfs(dfs, i); } for (auto& x : ids) { x = group_num - 1 - x; } return {group_num, ids}; } std::vector<std::vector<int>> scc() { auto ids = scc_ids(); int group_num = ids.first; std::vector<int> counts(group_num); for (auto x : ids.second) counts[x]++; std::vector<std::vector<int>> groups(ids.first); for (int i = 0; i < group_num; i++) { groups[i].reserve(counts[i]); } for (int i = 0; i < _n; i++) { groups[ids.second[i]].push_back(i); } return groups; } private: int _n; struct edge { int to; }; std::vector<std::pair<int, edge>> edges; }; } } #endif #ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP #define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1 #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } } #endif #ifndef ATCODER_MODINT_HPP #define ATCODER_MODINT_HPP 1 #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } } #endif #ifndef ATCODER_CONVOLUTION_HPP #define ATCODER_CONVOLUTION_HPP 1 #include <algorithm> #include <array> #include <cassert> #include <type_traits> #include <vector> namespace atcoder { namespace internal { template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; if (first) { first = false; mint es[30], ies[30]; int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; if (first) { first = false; mint es[30], ies[30]; int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector<mint> ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; static constexpr unsigned long long MOD2 = 167772161; static constexpr unsigned long long MOD3 = 469762049; static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } #endif #ifndef ATCODER_DSU_HPP #define ATCODER_DSU_HPP 1 #include <algorithm> #include <cassert> #include <vector> namespace atcoder { struct dsu { public: dsu() : _n(0) {} dsu(int n) : _n(n), parent_or_size(n, -1) {} int merge(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); int x = leader(a), y = leader(b); if (x == y) return x; if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y); parent_or_size[x] += parent_or_size[y]; parent_or_size[y] = x; return x; } bool same(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return leader(a) == leader(b); } int leader(int a) { assert(0 <= a && a < _n); if (parent_or_size[a] < 0) return a; return parent_or_size[a] = leader(parent_or_size[a]); } int size(int a) { assert(0 <= a && a < _n); return -parent_or_size[leader(a)]; } std::vector<std::vector<int>> groups() { std::vector<int> leader_buf(_n), group_size(_n); for (int i = 0; i < _n; i++) { leader_buf[i] = leader(i); group_size[leader_buf[i]]++; } std::vector<std::vector<int>> result(_n); for (int i = 0; i < _n; i++) { result[i].reserve(group_size[i]); } for (int i = 0; i < _n; i++) { result[leader_buf[i]].push_back(i); } result.erase( std::remove_if(result.begin(), result.end(), [&](const std::vector<int>& v) { return v.empty(); }), result.end()); return result; } private: int _n; std::vector<int> parent_or_size; }; } #endif #ifndef ATCODER_FENWICKTREE_HPP #define ATCODER_FENWICKTREE_HPP 1 #include <cassert> #include <vector> namespace atcoder { template <class T> struct fenwick_tree { using U = internal::to_unsigned_t<T>; public: fenwick_tree() : _n(0) {} fenwick_tree(int n) : _n(n), data(n) {} void add(int p, T x) { assert(0 <= p && p < _n); p++; while (p <= _n) { data[p - 1] += U(x); p += p & -p; } } void change(int p,T x){ add(p,x-data[p]); } T sum(int l, int r) { assert(0 <= l && l <= r && r <= _n); return sum(r) - sum(l); } int lb(T w){ if(w<=0)return 0; int x=0; int u=1;while(u<_n)u*=2; for(int k=u;k>0;k/=2){ if(x+k<=_n&&data[x+k-1]<w){ w-=data[x+k-1]; x+=k; } } return x; } private: int _n; std::vector<U> data; U sum(int r) { U s = 0; while (r > 0) { s += data[r - 1]; r -= r & -r; } return s; } }; struct fenwickd{ private: ll u; vector<double> bit; public: fenwickd(ll n){ u=1;while(u<n)u*=2; bit.resize(u+10,0); } void add(ll n,double x){ ll i=n; bit[i]+=x; //bit[i]%=mod; while(i<u){ i+=i&(-i); bit[i]+=x; //bit[i]%=mod; } } void change(ll n,double x){ add(n,x-bit[n]); } double sum(ll n){ ll i=n; double ret=0; while(i>0){ ret+=bit[i]; i-=i&(-i); //ret%=mod; } return ret; } ll lb(double w){ if(w<=0)return 0; ll x=0; for(ll k=u;k>0;k/=2){ if(x+k<=u&&bit[x+k]<w){ w-=bit[x+k]; x+=k; } } return x+1; } }; //vector<BIT> b(26,n+1); } #endif #ifndef ATCODER_LAZYSEGTREE_HPP #define ATCODER_LAZYSEGTREE_HPP 1 #include <algorithm> #include <cassert> #include <iostream> #include <vector> namespace atcoder { template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()> struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {} lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); lz = std::vector<F>(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push(r >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template <class G> int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template <class G> int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; std::vector<F> lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; } #endif #ifndef ATCODER_MATH_HPP #define ATCODER_MATH_HPP 1 #include <algorithm> #include <cassert> #include <tuple> #include <vector> namespace atcoder { long long pow_mod(long long x, long long n, int m) { assert(0 <= n && 1 <= m); if (m == 1) return 0; internal::barrett bt((unsigned int)(m)); unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m)); while (n) { if (n & 1) r = bt.mul(r, y); y = bt.mul(y, y); n >>= 1; } return r; } long long inv_mod(long long x, long long m) { assert(1 <= m); auto z = internal::inv_gcd(x, m); assert(z.first == 1); return z.second; } std::pair<long long, long long> crt(const std::vector<long long>& r, const std::vector<long long>& m) { assert(r.size() == m.size()); int n = int(r.size()); long long r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) { std::swap(r0, r1); std::swap(m0, m1); } if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } long long g, im; std::tie(g, im) = internal::inv_gcd(m0, m1); long long u1 = (m1 / g); if ((r1 - r0) % g) return {0, 0}; long long x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } long long floor_sum(long long n, long long m, long long a, long long b) { long long ans = 0; if (a >= m) { ans += (n - 1) * n * (a / m) / 2; a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } long long y_max = (a * n + b) / m, x_max = (y_max * m - b); if (y_max == 0) return ans; ans += (n - (x_max + a - 1) / a) * y_max; ans += floor_sum(y_max, a, m, (a - x_max % a) % a); return ans; } } #endif #ifndef ATCODER_MAXFLOW_HPP #define ATCODER_MAXFLOW_HPP 1 #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap> struct mf_graph { public: mf_graph() : _n(0) {} mf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0}); return m; } struct edge { int from, to; Cap cap, flow; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap}; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result; for (int i = 0; i < m; i++) { result.push_back(get_edge(i)); } return result; } void change_edge(int i, Cap new_cap, Cap new_flow) { int m = int(pos.size()); assert(0 <= i && i < m); assert(0 <= new_flow && new_flow <= new_cap); auto& _e = g[pos[i].first][pos[i].second]; auto& _re = g[_e.to][_e.rev]; _e.cap = new_cap - new_flow; _re.cap = new_flow; } Cap flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } Cap flow(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); std::vector<int> level(_n), iter(_n); internal::simple_queue<int> que; auto bfs = [&]() { std::fill(level.begin(), level.end(), -1); level[s] = 0; que.clear(); que.push(s); while (!que.empty()) { int v = que.front(); que.pop(); for (auto e : g[v]) { if (e.cap == 0 || level[e.to] >= 0) continue; level[e.to] = level[v] + 1; if (e.to == t) return; que.push(e.to); } } }; auto dfs = [&](auto self, int v, Cap up) { if (v == s) return up; Cap res = 0; int level_v = level[v]; for (int& i = iter[v]; i < int(g[v].size()); i++) { _edge& e = g[v][i]; if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue; Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap)); if (d <= 0) continue; g[v][i].cap += d; g[e.to][e.rev].cap -= d; res += d; if (res == up) break; } return res; }; Cap flow = 0; while (flow < flow_limit) { bfs(); if (level[t] == -1) break; std::fill(iter.begin(), iter.end(), 0); while (flow < flow_limit) { Cap f = dfs(dfs, t, flow_limit - flow); if (!f) break; flow += f; } } return flow; } std::vector<bool> min_cut(int s) { std::vector<bool> visited(_n); internal::simple_queue<int> que; que.push(s); while (!que.empty()) { int p = que.front(); que.pop(); visited[p] = true; for (auto e : g[p]) { if (e.cap && !visited[e.to]) { visited[e.to] = true; que.push(e.to); } } } return visited; } private: int _n; struct _edge { int to, rev; Cap cap; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } #endif #ifndef ATCODER_MINCOSTFLOW_HPP #define ATCODER_MINCOSTFLOW_HPP 1 #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } #endif #ifndef ATCODER_SCC_HPP #define ATCODER_SCC_HPP 1 #include <algorithm> #include <cassert> #include <vector> namespace atcoder { struct scc_graph { public: scc_graph() : internal(0) {} scc_graph(int n) : internal(n) {} void add_edge(int from, int to) { int n = internal.num_vertices(); assert(0 <= from && from < n); assert(0 <= to && to < n); internal.add_edge(from, to); } std::vector<std::vector<int>> scc() { return internal.scc(); } private: internal::scc_graph internal; }; } #endif #ifndef ATCODER_SEGTREE_HPP #define ATCODER_SEGTREE_HPP 1 #include <algorithm> #include <cassert> #include <vector> namespace atcoder { template <class S, S (*op)(S, S), S (*e)()> struct segtree { public: segtree() : segtree(0) {} segtree(int n) : segtree(std::vector<S>(n, e())) {} segtree(const std::vector<S>& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } template <bool (*f)(S)> int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template <class F> int max_right(int l, F f) { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*f)(S)> int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template <class F> int min_left(int r, F f) { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; } #endif #ifndef ATCODER_STRING_HPP #define ATCODER_STRING_HPP 1 #include <algorithm> #include <cassert> #include <numeric> #include <string> #include <vector> namespace atcoder { namespace internal { std::vector<int> sa_naive(const std::vector<int>& s) { int n = int(s.size()); std::vector<int> sa(n); std::iota(sa.begin(), sa.end(), 0); std::sort(sa.begin(), sa.end(), [&](int l, int r) { if (l == r) return false; while (l < n && r < n) { if (s[l] != s[r]) return s[l] < s[r]; l++; r++; } return l == n; }); return sa; } std::vector<int> sa_doubling(const std::vector<int>& s) { int n = int(s.size()); std::vector<int> sa(n), rnk = s, tmp(n); std::iota(sa.begin(), sa.end(), 0); for (int k = 1; k < n; k *= 2) { auto cmp = [&](int x, int y) { if (rnk[x] != rnk[y]) return rnk[x] < rnk[y]; int rx = x + k < n ? rnk[x + k] : -1; int ry = y + k < n ? rnk[y + k] : -1; return rx < ry; }; std::sort(sa.begin(), sa.end(), cmp); tmp[sa[0]] = 0; for (int i = 1; i < n; i++) { tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0); } std::swap(tmp, rnk); } return sa; } template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40> std::vector<int> sa_is(const std::vector<int>& s, int upper) { int n = int(s.size()); if (n == 0) return {}; if (n == 1) return {0}; if (n == 2) { if (s[0] < s[1]) { return {0, 1}; } else { return {1, 0}; } } if (n < THRESHOLD_NAIVE) { return sa_naive(s); } if (n < THRESHOLD_DOUBLING) { return sa_doubling(s); } std::vector<int> sa(n); std::vector<bool> ls(n); for (int i = n - 2; i >= 0; i--) { ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]); } std::vector<int> sum_l(upper + 1), sum_s(upper + 1); for (int i = 0; i < n; i++) { if (!ls[i]) { sum_s[s[i]]++; } else { sum_l[s[i] + 1]++; } } for (int i = 0; i <= upper; i++) { sum_s[i] += sum_l[i]; if (i < upper) sum_l[i + 1] += sum_s[i]; } auto induce = [&](const std::vector<int>& lms) { std::fill(sa.begin(), sa.end(), -1); std::vector<int> buf(upper + 1); std::copy(sum_s.begin(), sum_s.end(), buf.begin()); for (auto d : lms) { if (d == n) continue; sa[buf[s[d]]++] = d; } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); sa[buf[s[n - 1]]++] = n - 1; for (int i = 0; i < n; i++) { int v = sa[i]; if (v >= 1 && !ls[v - 1]) { sa[buf[s[v - 1]]++] = v - 1; } } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); for (int i = n - 1; i >= 0; i--) { int v = sa[i]; if (v >= 1 && ls[v - 1]) { sa[--buf[s[v - 1] + 1]] = v - 1; } } }; std::vector<int> lms_map(n + 1, -1); int m = 0; for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms_map[i] = m++; } } std::vector<int> lms; lms.reserve(m); for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms.push_back(i); } } induce(lms); if (m) { std::vector<int> sorted_lms; sorted_lms.reserve(m); for (int v : sa) { if (lms_map[v] != -1) sorted_lms.push_back(v); } std::vector<int> rec_s(m); int rec_upper = 0; rec_s[lms_map[sorted_lms[0]]] = 0; for (int i = 1; i < m; i++) { int l = sorted_lms[i - 1], r = sorted_lms[i]; int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n; int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n; bool same = true; if (end_l - l != end_r - r) { same = false; } else { while (l < end_l) { if (s[l] != s[r]) { break; } l++; r++; } if (l == n || s[l] != s[r]) same = false; } if (!same) rec_upper++; rec_s[lms_map[sorted_lms[i]]] = rec_upper; } auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper); for (int i = 0; i < m; i++) { sorted_lms[i] = lms[rec_sa[i]]; } induce(sorted_lms); } return sa; } } std::vector<int> suffix_array(const std::vector<int>& s, int upper) { assert(0 <= upper); for (int d : s) { assert(0 <= d && d <= upper); } auto sa = internal::sa_is(s, upper); return sa; } template <class T> std::vector<int> suffix_array(const std::vector<T>& s) { int n = int(s.size()); std::vector<int> idx(n); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; }); std::vector<int> s2(n); int now = 0; for (int i = 0; i < n; i++) { if (i && s[idx[i - 1]] != s[idx[i]]) now++; s2[idx[i]] = now; } return internal::sa_is(s2, now); } std::vector<int> suffix_array(const std::string& s) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return internal::sa_is(s2, 255); } template <class T> std::vector<int> lcp_array(const std::vector<T>& s, const std::vector<int>& sa) { int n = int(s.size()); assert(n >= 1); std::vector<int> rnk(n); for (int i = 0; i < n; i++) { rnk[sa[i]] = i; } std::vector<int> lcp(n - 1); int h = 0; for (int i = 0; i < n; i++) { if (h > 0) h--; if (rnk[i] == 0) continue; int j = sa[rnk[i] - 1]; for (; j + h < n && i + h < n; h++) { if (s[j + h] != s[i + h]) break; } lcp[rnk[i] - 1] = h; } return lcp; } std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return lcp_array(s2, sa); } template <class T> std::vector<int> z_algo(const std::vector<T>& s) { int n = int(s.size()); if (n == 0) return {}; std::vector<int> z(n); z[0] = 0; for (int i = 1, j = 0; i < n; i++) { int& k = z[i]; k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]); while (i + k < n && s[k] == s[i + k]) k++; if (j + z[j] < i + z[i]) j = i; } z[0] = n; return z; } std::vector<int> z_algo(const std::string& s) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return z_algo(s2); } } #endif #ifndef ATCODER_TWOSAT_HPP #define ATCODER_TWOSAT_HPP 1 #include <cassert> #include <vector> namespace atcoder { struct two_sat { public: two_sat() : _n(0), scc(0) {} two_sat(int n) : _n(n), _answer(n), scc(2 * n) {} void add(int i, bool f, int j, bool g) { assert(0 <= i && i < _n); assert(0 <= j && j < _n); scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0)); scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0)); } bool satis() { auto id = scc.scc_ids().second; for (int i = 0; i < _n; i++) { if (id[2 * i] == id[2 * i + 1]) return false; _answer[i] = id[2 * i] < id[2 * i + 1]; } return true; } std::vector<bool> answer() { return _answer; } private: int _n; std::vector<bool> _answer; internal::scc_graph scc; }; } #endif using namespace atcoder; //dsu d(n) d.merge d.same d.leader d.size vector<vector<int>> d.groups() //fenwick_tree<ll> fw(n) fw.add(p,x) fw.sum(l,r) [l,r) // pll crt(vector<ll> r,vector<ll> m) x≡y (modz) {y,z} // floor_sum(n,m,a,b) Σi=0:i=n-1 floor((a*i+b)/m) O(log) // mf_graph<int/ll> graph(n) int graph.add_edge(from,to,cap) (the number of edge) graph.flow(s,t) //graph.flow(s,t,flow_limit) if(allcap==1) O(min(n^(2/3)m,m^(3/2)) else O(mnn) //graph.change_cap(i,new_cap,new_flow) (can change) //mf_graph<cap>::edge graph.get_edge(i) from,to,cap,flow //vector<mf_graph<cap>::edge> graph.edges() //mcf_graph<cap,cost> graph(n) int graph.add_edge(from,to,cap,cost) (the number of edge) //pair<cap,cost> graph.flow(s,t,(flow_limit)) vector<pair<cap,cost>> graph.slope(s,t) ?? //O(FV^2)or O(FElogV) // using mint=static_modint<mod> or modint998244353; int x.val(); //scc_graph g(n) g.add_edge(from,to) vector<vector<int>> v=g.scc(); //vector<ll> convolution<prime>(vector<ll> a,vector<ll> b) //vector<ll> convolution_ll(vector<ll> a,vector<ll> b) no mod //two_sat ts(n) ts.add(i,bool f,j,bool g) //bool ts.satis() vector<bool> ts.answer() //vector<int> suffix_array(s) suffix_array<int>(vector<int> s) //vector<int> lcp_array(or <int>)(s or vector<int> s,vector<int> sa) // vector<int> z_algo(or <int>)(s or vector<int> s) //segtree<S,op,e> seg(n or vector<S> v) // seg.set(place,S x) S seg.get(place) S seg.prod(l,r) op(a[l],...,a[r-1]) //S seg.all_prod() op(a[0],...,a[n-1]) //int seg.max_right<f>(l) define bool f(S x) output one r binary search //int seg.min_left<f>(r) // ST...op,e(),(f) //lazy_segtree<S,op,e,F,mapping,composition,id> seg(n or vector<T> v); // set get prod all_prod max_right min_left // seg.apply(place,T x) a[p]=op(a[p],x) seg.apply(l,r,T x) l~r-1 a[i]=op(a[i],x) //#define endl "\n" struct edge{int from,to,cost;}; int main(){ ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); ll n,m;cin>>n>>m; vector<pii> v[n]; vector<pipi> w; edge es[m]; rep(i,0,m){ int a,b,c;cin>>a>>b>>c; a--; b--; v[a].push_back({b,c}); w.push_back({c,{a,b}}); es[i]={a,b,c}; } sort(w.begin(),w.end()); int d[n]; rep(i,0,n)d[i]=1000000000; d[0]=0; int ans[n]; fill(ans,ans+n,1000000000); priority_queue<pii,vector<pii>,greater<pii>> q; q.push({0,0}); while(q.size()>0){ pii p=q.top();q.pop(); int nd=p.first,now=p.second; if(d[now]<nd)continue; rep(i,0,v[now].size()){ int ne=v[now][i].first; if(d[ne]>nd+1){ d[ne]=nd+1; q.push({nd+1,ne}); } } } int u=-10000000; rep(i,0,m){ int f=w[i].second.first,g=w[i].second.second; deque<int> dq; int x=w[i].first; bool used[n]; fill(used,used+n,false); if(d[g]>d[f]-1&&d[f]>u&&d[g]>u){ d[g]=d[f]-1; dq.push_back(g); used[g]=true; } while(dq.size()>0){ int now=dq.front();dq.pop_front(); rep(j,0,v[now].size()){ int ne=v[now][j].first; int co=1; if(v[now][j].second<=x)co=-1; int nc=d[now]+co; if(d[now]==u)nc=u; if(d[ne]>d[now]+co){ if(used[ne]==false){ used[ne]=true; d[ne]=d[now]+co; if(d[now]==u)d[ne]=u; if(d[ne]==u)dq.push_front(ne); else{ if(co==-1)dq.push_front(ne); else dq.push_back(ne); } } else{ if(d[ne]==u)continue; else{ d[ne]=u; dq.push_front(ne); } } } } } //cout<<x<<endl; rep(j,0,n){ if(d[j]<=0)Min(ans[j],x); //cout<<d[j]<<" "; } //cout<<endl; } rep(i,0,n)if(ans[i]==1000000000)ans[i]=-1; rep(i,1,n)cout<<ans[i]<<endl; }