結果

問題 No.1394 Changing Problems
ユーザー りあんりあん
提出日時 2021-02-13 00:51:07
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 11,152 bytes
コンパイル時間 2,463 ms
コンパイル使用メモリ 213,076 KB
実行使用メモリ 16,128 KB
最終ジャッジ日時 2024-07-20 02:30:56
合計ジャッジ時間 6,911 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 AC 3 ms
5,376 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 AC 133 ms
16,128 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>

#include <algorithm>
#include <cassert>
#include <vector>


#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder


#include <cassert>
#include <vector>


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

template <class T> struct fenwick_tree {
    using U = internal::to_unsigned_t<T>;

  public:
    fenwick_tree() : _n(0) {}
    explicit fenwick_tree(int n) : _n(n), data(n) {}

    void add(int p, T x) {
        assert(0 <= p && p < _n);
        p++;
        while (p <= _n) {
            data[p - 1] += U(x);
            p += p & -p;
        }
    }

    T sum(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        return sum(r) - sum(l);
    }

  private:
    int _n;
    std::vector<U> data;

    U sum(int r) {
        U s = 0;
        while (r > 0) {
            s += data[r - 1];
            r -= r & -r;
        }
        return s;
    }
};

}  // namespace atcoder

using namespace std;
const int M = 1000000007;
using P = pair<int, int>;


struct node {
    int max;
    int idx;
    int sum;
    node() {}
    node(int x, int i) : max(0), idx(i), sum(x) {}
    node(int max, int idx, int sum) : max(max), idx(idx), sum(sum) {}
};
node merge(node a, node b) {
    int sum = a.sum + b.sum;
    int max, idx;
    if (a.sum + b.max > a.max) {
        max = a.sum + b.max;
        idx = b.idx;
    }
    else {
        max = a.max;
        idx = a.idx;
    }
    return node(max, idx, sum);
}
node e() {
    return node(-M, -M, 0);
}

int maa(int a, int b) {
    return max(a, b);
}

int e2() {
    return -M;
}


void hoge() {
    int q;
    cin >> q;
    for (int _ = 0; _ < q; ++_) {
        int i, x;
        cin >> i >> x;
        cout << x + 1 << '\n';
    }
}


int main() {
    cin.tie(0);
    ios::sync_with_stdio(0);
    int n;
    cin >> n;
    vector<int> a(n);
    for (int i = 0; i < n; ++i) {
        cin >> a[i];
    }
    if (n == 1) {
        hoge();
        return 0;
    }
    vector<int> cnt(n - 1);
    long long sum = 0;
    for (int i = 0; i < n; ++i) {
        ++cnt[a[i] % (n - 1)];
        sum += a[i] / (n - 1);
    }
    vector<node> v(n - 1);
    for (int i = 0; i < n - 1; ++i) {
        v[i] = node(cnt[i] - 1, i);
    }
    atcoder::segtree<node, merge, e> sg(v);
    atcoder::segtree<int, maa, e2> sg2(a);
    atcoder::fenwick_tree<int> bit(n - 1);
    for (int i = 0; i < n - 1; ++i) {
        bit.add(i, cnt[i]);
    }

    auto prod = [&](int l, int r) {
        l %= n - 1;
        r %= n - 1;
        if (l < r) {
            return sg.prod(l, r);
        }
        else {
            node res1 = sg.prod(l, n - 1);
            node res2 = sg.prod(0, r);
            return merge(res1, res2);
        }
    };


    int q;
    cin >> q;
    for (int _ = 0; _ < q; ++_) {
        int i, x;
        cin >> i >> x;
        --i;
        --cnt[a[i] % (n - 1)];
        sg.set(a[i] % (n - 1), node(cnt[a[i] % (n - 1)] - 1, a[i] % (n - 1)));
        bit.add(a[i] % (n - 1), -1);
        sum -= a[i] / (n - 1);
        a[i] = x;
        ++cnt[a[i] % (n - 1)];
        sg.set(a[i] % (n - 1), node(cnt[a[i] % (n - 1)] - 1, a[i] % (n - 1)));
        bit.add(a[i] % (n - 1), 1);
        sum += a[i] / (n - 1);
        sg2.set(i, x);

        long long ma = sg2.prod(0, n);
        if (ma <= n - 2) {
            cout << 0 << '\n';
            continue;
        }

        long long c = ma / (n - 1) * n - sum;
        c -= bit.sum(ma % (n - 1) + 1, n - 1);
        assert(c >= 0);

        long long k = ma - (n - 2);
        if (k <= c) {
            cout << k << '\n';
            continue;
        }
        // cout << k << ' ' << c << '\n';
        node nd = prod(ma % (n - 1) + 1, ma % (n - 1) + 1 + n - 1);
        // cout << nd.idx << ' ' << nd.max << ' ' << nd.sum << '\n';
        int di = nd.idx - (ma % (n - 1) + 1);
        while (di < 0) di += n - 1;
        if (k - c <= nd.max) {
            int ok = ma % (n - 1) + 1 + n - 1;
            int ng = ma % (n - 1) + 1;
            while (ng + 1 < ok) {
                int mid = (ok + ng) / 2;
                if (k - c <= prod(ma % (n - 1) + 1, mid).max) {
                    ok = mid;
                }
                else {
                    ng = mid;
                }
            }
            di = ok - 1 - (ma % (n - 1) + 1);
            // while (di < 0) di += n - 1;
            cout << k + di << '\n';
            continue;
        }
        continue;
        k += di;
        c += nd.max + di;
        // cout << k << ' ' << c << '\n';
        assert(k > c);
        long long rem = k - c;
        cout << k + rem * (n - 1) << '\n';
    }

    return 0;
}
0