結果

問題 No.1333 Squared Sum
ユーザー nebocco
提出日時 2021-02-14 15:51:13
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 301 ms / 2,000 ms
コード長 17,690 bytes
コンパイル時間 12,347 ms
コンパイル使用メモリ 389,956 KB
実行使用メモリ 54,976 KB
最終ジャッジ日時 2024-07-22 00:35:56
合計ジャッジ時間 20,997 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 44
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

fn main() {
let mut io = IO::new();
let n = io.scan();
if n == 1 {
io.println(0);
return;
}
let ed: Vec<(usize, usize, i64)> = io.scan_vec(n-1);
type Fp = F1000000007;
let mut g = UndirectedGraph::new(n);
for &(u, v, w) in &ed {
g.add_edge(u - 1, v - 1, w);
}
let root = (0..n).filter(|&i| g.edges_from(i).count() == 1).next().unwrap();
let (dist, par, euler, size) = tree_dfs(&g, root);
let dist = dist.into_iter().map(|x| Fp::new(x)).collect::<Vec<Fp>>();
let size = size.into_iter().map(|x| Fp::new(x as i64)).collect::<Vec<Fp>>();
let score = (0..n).map(|v| if par[v].is_none() {
Fp::zero()
} else {
dist[v] - dist[par[v].unwrap()]
}).collect::<Vec<Fp>>();
let fpn = Fp::new(n as i64);
let mut tsum = vec![Fp::zero(); n];
let mut bsum = vec![Fp::zero(); n];
for &v in euler.iter().skip(2).rev() {
let u = par[v].unwrap();
bsum[u] = bsum[u] + bsum[v] + score[v] * size[v];
}
for &v in euler.iter().skip(2) {
let u = par[v].unwrap();
tsum[v] = tsum[u] + score[u] * (fpn - size[u]) + bsum[u] - bsum[v] - score[v] * size[v];
}
let mut ans = Fp::zero();
for &v in euler.iter().skip(1) {
ans += score[v] * score[v] * size[v] * (fpn - size[v]) +
tsum[v] * score[v] * size[v] + bsum[v] * score[v] * (fpn - size[v]);
}
println!("{}", ans);
}
pub fn tree_dfs<C: Cost, G: Graph<C>>(g: &G, root: usize)
-> (Vec<C>, Vec<Option<usize>>, Vec<usize>, Vec<usize>)
{
let n = g.size();
let mut euler = Vec::with_capacity(n);
let mut dist = vec![C::MAX; n];
dist[root] = C::zero();
let mut par = vec![None; n];
let mut size = vec![1; n];
let mut q = vec![root];
while let Some(v) = q.pop() {
euler.push(v);
for e in g.edges_from(v) {
if par[v] == Some(e.to) { continue; }
par[e.to] = Some(v);
dist[e.to] = dist[v] + e.cost;
q.push(e.to);
}
}
for &i in euler.iter().skip(1).rev() {
size[par[i].unwrap()] += size[i];
}
(dist, par, euler, size)
}
// ------------ fp start ------------
use std::{
fmt::{Debug, Display},
hash::Hash,
iter,
marker::PhantomData,
};
// NOTE: `crate::`
crate::define_fp!(pub F998244353, Mod998244353, 998244353);
crate::define_fp!(pub F1000000007, Mod1000000007, 1000000007);
#[derive(Clone, PartialEq, Copy, Eq, Hash)]
pub struct Fp<T>(i64, PhantomData<T>);
pub trait Mod: Debug + Clone + PartialEq + Copy + Eq + Hash {
const MOD: i64;
}
impl<T: Mod> Fp<T> {
pub fn new(mut x: i64) -> Self {
x %= T::MOD;
Self::unchecked(if x < 0 { x + T::MOD } else { x })
}
pub fn into_inner(self) -> i64 {
self.0
}
pub fn r#mod() -> i64 {
T::MOD
}
pub fn inv(self) -> Self {
assert_ne!(self.0, 0, "Zero division");
let (sign, x) = if self.0 * 2 < T::MOD {
(1, self.0)
} else {
(-1, T::MOD - self.0)
};
let (g, _a, b) = ext_gcd(T::MOD, x);
let ans = sign * b;
assert_eq!(g, 1);
Self::unchecked(if ans < 0 { ans + T::MOD } else { ans })
}
pub fn frac(x: i64, y: i64) -> Self {
Fp::new(x) / Fp::new(y)
}
pub fn pow(mut self, mut p: u64) -> Self {
let mut ans = Fp::new(1);
while p != 0 {
if p & 1 == 1 {
ans *= self;
}
self *= self;
p >>= 1;
}
ans
}
fn unchecked(x: i64) -> Self {
Self(x, PhantomData)
}
}
impl<T: Mod> iter::Sum<Fp<T>> for Fp<T> {
fn sum<I>(iter: I) -> Self
where
I: iter::Iterator<Item = Fp<T>>,
{
iter.fold(Fp::new(0), Add::add)
}
}
impl<'a, T: 'a + Mod> iter::Sum<&'a Fp<T>> for Fp<T> {
fn sum<I>(iter: I) -> Self
where
I: iter::Iterator<Item = &'a Fp<T>>,
{
iter.fold(Fp::new(0), Add::add)
}
}
impl<T: Mod> iter::Product<Fp<T>> for Fp<T> {
fn product<I>(iter: I) -> Self
where
I: iter::Iterator<Item = Fp<T>>,
{
iter.fold(Self::new(1), Mul::mul)
}
}
impl<'a, T: 'a + Mod> iter::Product<&'a Fp<T>> for Fp<T> {
fn product<I>(iter: I) -> Self
where
I: iter::Iterator<Item = &'a Fp<T>>,
{
iter.fold(Self::new(1), Mul::mul)
}
}
impl<T: Mod> Debug for Fp<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
write!(f, "{}", self.0)
}
}
impl<T: Mod> Display for Fp<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
write!(f, "{}", self.0)
}
}
// ax + by = gcd(x, y) (a, b) (g, a, b)
//
// | 0 -x | | y -x | | x 0 |
// | 1 b | = | a b | | y 1 |
fn ext_gcd(x: i64, y: i64) -> (i64, i64, i64) {
let (b, g) = {
let mut x = x;
let mut y = y;
let mut u = 0;
let mut v = 1;
while x != 0 {
let q = y / x;
y -= q * x;
v -= q * u;
std::mem::swap(&mut x, &mut y);
std::mem::swap(&mut u, &mut v);
}
(v, y)
};
assert_eq!((g - b * y) % x, 0);
let a = (g - b * y) / x;
(g, a, b)
}
#[macro_export]
macro_rules! define_fp {
($vis:vis $fp:ident, $t:ident, $mod:expr) => {
#[derive(Debug, Clone, PartialEq, Copy, Eq, Hash)]
$vis struct $t;
// NOTE: `$crate::`
impl Mod for $t {
const MOD: i64 = $mod;
}
// NOTE: `$crate::`
$vis type $fp = Fp<$t>;
}
}
// ------------ impl arith start ------------
impl<T: Mod> Associative for Fp<T> {}
impl<T: Mod> Zero for Fp<T> {
fn zero() -> Self { Self::unchecked(0) }
fn is_zero(&self) -> bool { self.0 == 0 }
}
impl<T: Mod> One for Fp<T> {
fn one() -> Self { Self::unchecked(1) }
fn is_one(&self) -> bool { self.0 == 1 }
}
impl<T: Mod> Add for Fp<T> {
type Output = Self;
fn add(self, rhs: Self) -> Self {
let res = self.0 + rhs.0;
Self::unchecked(if T::MOD <= res { res - T::MOD } else { res })
}
}
impl<T: Mod> Sub for Fp<T> {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
let res = self.0 - rhs.0;
Self::unchecked(if res < 0 { res + T::MOD } else { res })
}
}
impl<T: Mod> Mul for Fp<T> {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
Self::new(self.0 * rhs.0)
}
}
#[allow(clippy::suspicious_arithmetic_impl)]
impl<T: Mod> Div for Fp<T> {
type Output = Self;
fn div(self, rhs: Self) -> Self {
self * rhs.inv()
}
}
impl<M: Mod> Neg for Fp<M> {
type Output = Self;
fn neg(self) -> Self {
if self.0 == 0 {
Self::unchecked(0)
} else {
Self::unchecked(M::MOD - self.0)
}
}
}
impl<M: Mod> Neg for &Fp<M> {
type Output = Fp<M>;
fn neg(self) -> Self::Output {
if self.0 == 0 {
Fp::unchecked(0)
} else {
Fp::unchecked(M::MOD - self.0)
}
}
}
macro_rules! forward_assign_biop {
($(impl $trait:ident, $fn_assign:ident, $fn:ident)*) => {
$(
impl<M: Mod> $trait for Fp<M> {
fn $fn_assign(&mut self, rhs: Self) {
*self = self.$fn(rhs);
}
}
)*
};
}
forward_assign_biop! {
impl AddAssign, add_assign, add
impl SubAssign, sub_assign, sub
impl MulAssign, mul_assign, mul
impl DivAssign, div_assign, div
}
macro_rules! forward_ref_binop {
($(impl $imp:ident, $method:ident)*) => {
$(
impl<'a, T: Mod> $imp<Fp<T>> for &'a Fp<T> {
type Output = Fp<T>;
fn $method(self, other: Fp<T>) -> Self::Output {
$imp::$method(*self, other)
}
}
impl<'a, T: Mod> $imp<&'a Fp<T>> for Fp<T> {
type Output = Fp<T>;
fn $method(self, other: &Fp<T>) -> Self::Output {
$imp::$method(self, *other)
}
}
impl<'a, T: Mod> $imp<&'a Fp<T>> for &'a Fp<T> {
type Output = Fp<T>;
fn $method(self, other: &Fp<T>) -> Self::Output {
$imp::$method(*self, *other)
}
}
)*
};
}
forward_ref_binop! {
impl Add, add
impl Sub, sub
impl Mul, mul
impl Div, div
}
// ------------ impl arith end ------------
// ------------ fp end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
///
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
///
pub trait Associative: Magma {}
///
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
///
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
///
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
///
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
///
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
///
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
///
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
///
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
///
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
// ------------ Graph impl start ------------
pub trait Cost:
Element
+ Clone + Copy + std::fmt::Display
+ Eq + Ord
+ Zero + One
+ Add<Output = Self> + AddAssign
+ Sub<Output = Self>
+ Neg<Output = Self>
{
const MAX: Self;
}
#[derive(Copy, Clone)]
pub struct Edge<C = Void> {
// pub from: usize,
pub to: usize,
pub cost: C,
pub id: usize
}
pub struct UndirectedGraph<C>(pub Vec<Vec<Edge<C>>>, pub usize);
pub struct DirectedGraph<C>{
pub forward: Vec<Vec<Edge<C>>>,
pub backward: Vec<Vec<Edge<C>>>,
pub count: usize,
}
pub trait Graph<C: Element> {
fn new(size: usize) -> Self;
fn size(&self) -> usize;
fn add_edge(&mut self, u: usize, v: usize, cost: C);
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>>;
}
impl<C: Element> Graph<C> for UndirectedGraph<C> {
fn new(size: usize) -> Self {
Self(vec![Vec::<Edge<C>>::new(); size], 0)
}
fn size(&self) -> usize {
self.0.len()
}
fn add_edge(&mut self, u: usize, v: usize, cost: C) {
self.0[u].push(Edge{ to: v, cost: cost.clone(), id: self.1 });
self.0[v].push(Edge{ to: u, cost: cost.clone(), id: self.1 });
self.1 += 1;
}
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
self.0[v].iter()
}
}
impl<C: Element> Graph<C> for DirectedGraph<C> {
fn new(size: usize) -> Self {
Self {
forward: vec![Vec::<Edge<C>>::new(); size],
backward: vec![Vec::<Edge<C>>::new(); size],
count: 0
}
}
fn size(&self) -> usize {
self.forward.len()
}
fn add_edge(&mut self, u: usize, v: usize, cost: C) {
self.forward[u].push(Edge{ to: v, cost: cost.clone(), id: self.count });
self.backward[v].push(Edge{ to: u, cost: cost.clone(), id: self.count });
self.count += 1;
}
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
self.forward[v].iter()
}
}
impl<C: Element> DirectedGraph<C> {
pub fn edges_to(&self, u: usize) -> std::slice::Iter<Edge<C>> {
self.backward[u].iter()
}
pub fn reverse(&self) -> Self {
Self {
forward: self.backward.clone(),
backward: self.forward.clone(),
count: self.count,
}
}
}
macro_rules! impl_cost {
($($T:ident,)*) => {
$(
impl Cost for $T { const MAX: Self = std::$T::MAX; }
)*
};
}
impl_cost! {
i8, i16, i32, i64, i128, isize,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Void();
impl std::fmt::Display for Void {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "")
}
}
impl Zero for Void {
fn zero() -> Self { Void() }
fn is_zero(&self) -> bool { true }
}
impl One for Void {
fn one() -> Self { Void() }
fn is_one(&self) -> bool { true }
}
impl Add for Void {
type Output = Self;
fn add(self, _: Self) -> Self { Void() }
}
impl AddAssign for Void {
fn add_assign(&mut self, _: Self) {}
}
impl Sub for Void {
type Output = Self;
fn sub(self, _: Self) -> Self { Void() }
}
impl Neg for Void {
type Output = Self;
fn neg(self) -> Self { Void() }
}
impl Cost for Void { const MAX: Self = Void(); }
// ------------ Graph impl end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
fn scan_raw(&mut self) -> &'static [u8] {
self.scan_str().as_bytes()
}
pub fn scan<T: Scan>(&mut self) -> T {
T::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<T> {
(0..n).map(|_| self.scan()).collect()
}
}
impl IO {
pub fn print<T: Print>(&mut self, x: T) {
T::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
fn scan(io: &mut IO) -> Self;
}
macro_rules! impl_parse_int {
($($t:tt),*) => {
$(
impl Scan for $t {
fn scan(s: &mut IO) -> Self {
let mut res = 0;
let mut neg = false;
for d in s.scan_raw() {
if *d == b'-' {
neg = true;
} else {
res *= 10;
res += (*d - b'0') as $t;
}
}
if neg { res = res.wrapping_neg(); }
res
}
}
)*
};
}
impl_parse_int!(i16, i32, i64, isize, u16, u32, u64, usize);
impl<T: Scan, U: Scan> Scan for (T, U) {
fn scan(s: &mut IO) -> Self {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
fn scan(s: &mut IO) -> Self {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
fn scan(s: &mut IO) -> Self {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
// ------------ io module end ------------
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0