結果
問題 | No.1397 Analog Graffiti |
ユーザー | QCFium |
提出日時 | 2021-02-14 22:29:36 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,710 bytes |
コンパイル時間 | 3,135 ms |
コンパイル使用メモリ | 203,608 KB |
実行使用メモリ | 16,880 KB |
最終ジャッジ日時 | 2024-07-22 10:17:36 |
合計ジャッジ時間 | 42,411 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 5,033 ms
16,788 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 4,987 ms
16,784 KB |
testcase_06 | WA | - |
testcase_07 | AC | 25 ms
6,676 KB |
testcase_08 | AC | 33 ms
7,440 KB |
testcase_09 | WA | - |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 4,862 ms
16,880 KB |
testcase_12 | AC | 1,032 ms
5,888 KB |
testcase_13 | AC | 4,796 ms
16,660 KB |
testcase_14 | AC | 4,890 ms
16,464 KB |
testcase_15 | AC | 447 ms
6,544 KB |
testcase_16 | AC | 982 ms
5,760 KB |
testcase_17 | AC | 4,568 ms
16,016 KB |
testcase_18 | AC | 4,697 ms
16,276 KB |
testcase_19 | AC | 11 ms
5,376 KB |
testcase_20 | AC | 12 ms
5,376 KB |
testcase_21 | AC | 73 ms
5,376 KB |
testcase_22 | AC | 1,846 ms
14,100 KB |
testcase_23 | AC | 141 ms
11,792 KB |
testcase_24 | AC | 5 ms
5,376 KB |
testcase_25 | AC | 337 ms
12,820 KB |
testcase_26 | AC | 3 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> int ri() { int n; scanf("%d", &n); return n; } template<int mod> struct ModInt{ int x; ModInt () : x(0) {} ModInt (int64_t x) : x(x >= 0 ? x % mod : (mod - -x % mod) % mod) {} ModInt &operator += (const ModInt &p){ if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator -= (const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator *= (const ModInt &p) { x = (int64_t) x * p.x % mod; return *this; } ModInt &operator /= (const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator ^= (int64_t p) { ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator - () const { return ModInt(-x); } ModInt operator + (const ModInt &p) const { return ModInt(*this) += p; } ModInt operator - (const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator * (const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator / (const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator ^ (int64_t p) const { return ModInt(*this) ^= p; } bool operator == (const ModInt &p) const { return x == p.x; } bool operator != (const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } ModInt &operator = (const int p) { x = p; return *this;} ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream & operator << (std::ostream &stream, const ModInt<mod> &p) { return stream << p.x; } friend std::istream & operator >> (std::istream &stream, ModInt<mod> &a) { int64_t x; stream >> x; a = ModInt<mod>(x); return stream; } }; typedef ModInt<998244353> mint; template<int mod> struct MComb { using mint = ModInt<mod>; std::vector<mint> fact; std::vector<mint> inv; MComb (int n) { // O(n + log(mod)) fact = std::vector<mint>(n + 1, 1); for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i); inv.resize(n + 1); inv[n] = fact[n] ^ (mod - 2); for (int i = n; i--; ) inv[i] = inv[i + 1] * mint(i + 1); } mint ncr(int n, int r) { return fact[n] * inv[r] * inv[n - r]; } mint npr(int n, int r) { return fact[n] * inv[n - r]; } mint nhr(int n, int r) { assert(n + r - 1 < (int) fact.size()); return ncr(n + r - 1, r); } }; int main() { int h = ri(); int w = ri(); int n = ri(); std::map<std::pair<std::vector<int>, std::vector<bool> >, int> compress; std::vector<std::pair<std::vector<int>, std::vector<bool> > > decompress; { int cnt = 0; std::vector<int> a(w); while (1) { bool used[w + 1]; memset(used, 0, sizeof(used)); used[0] = true; bool ok = true; for (auto i : a) { if (std::accumulate(used, used + i, 0) != i) { ok = false; break; } used[i] = true; } if (ok) { int all = std::accumulate(used, used + w + 1, 0); for (int i = 0; i < 1 << all; i += 2) { std::vector<bool> zo(w); for (int j = 0; j < w; j++) zo[j] = i >> a[j] & 1; compress[{a, zo}] = cnt++; decompress.push_back({a, zo}); } } int head = 0; while (head < w && ++a[head] > w) a[head++] = 0; if (head >= w) break; } } auto normalize = [] (std::vector<int> a) { int head = 1; int to[20]; for (auto &i : to) i = -1; to[0] = 0; for (auto &i : a) { if (to[i] == -1) to[i] = head++, i = to[i]; else i = to[i]; } return a; }; int s = compress.size(); mint dp[s][n + 1][2][2]; // state, # of vertex, up, finished dp[0][0][0][0] = 1; for (int i = 0; i <= h; i++) { for (int j = 0; j < w; j++) { mint next[s][n + 1][2][2]; // state, # of vertex, up, finished for (int k = 0; k < s; k++) { auto tmp = decompress[k]; auto group = tmp.first; auto zo = tmp.second; auto is_only = [&] (int l) { return std::count(group.begin(), group.end(), l) == 1; }; auto comp = [&] (std::vector<int> group, std::vector<bool> zo) { assert(compress.count({group, zo})); return compress[{group, zo}]; }; for (int l = 0; l <= n; l++) { for (int m = 0; m < 2; m++) { for (int f = 0; f < 2; f++) { if (dp[k][l][m][f] == 0) continue; do { // don't use int next_vertex = l; if (j == 0) { if (zo[0]) next_vertex++; if (next_vertex > n) {} else { auto next_group = group; next_group[0] = 0; next_group = normalize(next_group); auto next_zo = zo; next_zo[0] = false; int next_s = comp(next_group, next_zo); bool next_f = f; if (zo[0] && is_only(group[0])) { if (next_zo != std::vector<bool>(w)) break; next_f = true; } next[next_s][next_vertex][zo[0]][next_f] += dp[k][l][m][f]; } // 0 } else if (j == w - 1) { if ((m + zo[j] + zo[j - 1]) & 1) next_vertex++; if (zo[j]) next_vertex++; if (next_vertex > n) {} else { auto next_group = group; if (!zo[j - 1] && !zo[j]) { int r0 = group[j - 1]; int r1 = group[j]; for (auto &v : next_group) if (v == r0 || v == r1) v = 0; } else if (!zo[j - 1]) { int r0 = group[j - 1]; for (auto &v : next_group) if (v == r0) v = 0; next_group[j] = 0; } else if (!zo[j]) { int r0 = group[j]; for (auto &v : next_group) if (v == r0) v = 0; } else next_group[j] = 0; next_group = normalize(next_group); auto next_zo = zo; next_zo[j] = false; int next_s = comp(next_group, next_zo); bool next_f = f; if (zo[j] && is_only(group[j])) { if (next_zo != std::vector<bool>(w)) break; next_f = true; } next[next_s][next_vertex][0][next_f] += dp[k][l][m][f]; } } else { if ((m + zo[j] + zo[j - 1]) & 1) next_vertex++; if (next_vertex > n) {} else { auto next_group = group; if (!zo[j - 1] && !zo[j]) { int r0 = group[j - 1]; int r1 = group[j]; int r = std::min(r0, r1); for (auto &v : next_group) if (v == r0 || v == r1) v = r; } else if (!zo[j - 1]) next_group[j] = next_group[j - 1]; else if (!zo[j]) {} else next_group[j] = 19; next_group = normalize(next_group); auto next_zo = zo; next_zo[j] = false; int next_s = comp(next_group, next_zo); bool next_f = f; if (zo[j] && is_only(group[j])) { if (next_zo != std::vector<bool>(w)) break; next_f = true; } next[next_s][next_vertex][zo[j]][next_f] += dp[k][l][m][f]; } } } while (0); // --------------------------- if (i != h && !f) do { int next_vertex = l; if (j == 0) { if (!zo[0]) next_vertex++; if (next_vertex > n) {} else { auto next_group = group; if (!zo[0]) next_group[0] = 19; next_group = normalize(next_group); auto next_zo = zo; next_zo[0] = true; int next_s = comp(next_group, next_zo); next[next_s][next_vertex][zo[0]][f] += dp[k][l][m][f]; } // 0 } else if (j == w - 1) { if ((m + zo[j] + zo[j - 1] + 1) & 1) next_vertex++; if (!zo[j]) next_vertex++; if (next_vertex > n) {} else { auto next_group = group; if (zo[j - 1] && zo[j]) { int r0 = group[j - 1]; int r1 = group[j]; int r = std::min(r0, r1); for (auto &v : next_group) if (v == r0 || v == r1) v = r; } else if (zo[j - 1]) next_group[j] = next_group[j - 1]; else if (zo[j]) {} else next_group[j] = 19; next_group = normalize(next_group); auto next_zo = zo; next_zo[j] = true; int next_s = comp(next_group, next_zo); if (!zo[j]) assert(!group[j]); next[next_s][next_vertex][0][false] += dp[k][l][m][f]; } } else { if ((m + zo[j] + zo[j - 1] + 1) & 1) next_vertex++; if (next_vertex > n) {} else { auto next_group = group; if (zo[j - 1] && zo[j]) { int r0 = group[j - 1]; int r1 = group[j]; int r = std::min(r0, r1); for (auto &v : next_group) if (v == r0 || v == r1) v = r; } else if (zo[j - 1]) next_group[j] = next_group[j - 1]; else if (zo[j]) {} else next_group[j] = 19; next_group = normalize(next_group); auto next_zo = zo; next_zo[j] = true; int next_s = comp(next_group, next_zo); if (!zo[j] && group[j] && is_only(group[j])) break; next[next_s][next_vertex][zo[j]][false] += dp[k][l][m][f]; } } } while (0); } } } } memcpy(dp, next, sizeof(next)); } } std::cout << dp[0][n][0][1] << std::endl; /* for (auto i : states) { for (auto j : i.first) std::cerr << j << " "; std::cerr << std::endl; }*/ /* mint dp[s][1 << w][n + 1]; dp[0][0][0] = 1; for (int i = 0; i <= h; i++) { for (int j = 0; j < s; j++) { std::vector<int> connection = decompress[j]; for (int k = 0; k < 1 << w; k++) { for (int l = 0; l <= n; l++) { } } } } */ return 0; }