結果
問題 | No.898 tri-βutree |
ユーザー |
![]() |
提出日時 | 2021-02-15 16:53:22 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 213 ms / 4,000 ms |
コード長 | 8,500 bytes |
コンパイル時間 | 2,645 ms |
コンパイル使用メモリ | 221,116 KB |
最終ジャッジ日時 | 2025-01-18 21:11:04 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 21 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:212:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 212 | scanf("%d %d %d", &u, &v, &w); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ main.cpp:234:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 234 | scanf("%d %d %d", &x, &y, &z); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h>using namespace std;#define FOR(i,a,b) for(int i=(a);i<(b);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) begin(v),end(v)template<typename A, typename B> inline bool chmax(A & a, const B & b) { if (a < b) { a = b; return true; } return false; }template<typename A, typename B> inline bool chmin(A & a, const B & b) { if (a > b) { a = b; return true; } return false; }using ll = long long;using pii = pair<int, int>;constexpr ll INF = 1ll<<30;constexpr ll longINF = 1ll<<60;constexpr ll MOD = 1000000007;constexpr bool debug = false;//---------------------------------//struct HeavyLightDecomposition {using size_type = std::uint_fast32_t;using Graph = std::vector<std::vector<size_type>>;private:size_type bf_n; // グラフの頂点数std::vector<size_type> par_; // [v] := 頂点 v の親の頂点番号(存在しなければ自分自身)std::vector<size_type> sub_size_; // [v] := 頂点 v を根とする部分木のサイズstd::vector<size_type> depth_; // [v] := 頂点 v の元のグラフでの深さstd::vector<size_type> tree_id_; // [v] := 頂点 v が属する木の idstd::vector<size_type> roots_; // [i] := i 番目の木の rootstd::vector<size_type> heavy_map_; // [v] := 頂点 v が属する heavy-path idstd::vector<size_type> head_; // [i] := heavy-path i の最も根に近い頂点番号std::vector<size_type> heavy_size_ ; // [i] := heavy-path i に属する頂点の個数std::vector<size_type> heavy_depth_; // [i] := heavy-path i から根までに通る light-edge の個数// euler-tourstd::vector<size_type> in_; // [v] := 頂点 v の EulerTour 順序(同一 heavy-path 内では連続)std::vector<size_type> out_; // [v] := 頂点 v から出るときの EulerTour 順序std::vector<size_type> euler_map_; // [i] := EulerTour 順序が i であるような頂点// heavy-path doublingstd::vector<std::vector<size_type>> par_dblng_; // [k][i] := heavy-path i から 2^k 回 light-edge を上った先の頂点public:HeavyLightDecomposition(const Graph & g, bool use_lca = false) : HeavyLightDecomposition(g, g.size(), use_lca) {}HeavyLightDecomposition(const Graph & g, size_type root, bool use_lca) : bf_n(g.size()) {par_.resize(bf_size());sub_size_.resize(bf_size());depth_.resize(bf_size());tree_id_.assign(bf_size(), bf_size());std::vector<size_type> next(bf_size()); // [v] := 頂点 v と同一 heavy-path 内で v より 1 つ葉側の頂点(存在しなければ自分自身)for (size_type i = 0; i < bf_size(); ++i) {if (tree_id_[i] != bf_size()) continue;if (root != bf_size() && i != root) continue;std::stack<std::pair<size_type, size_type>> stk;par_[i] = i;depth_[i] = 0;tree_id_[i] = roots_.size();stk.emplace(i, 0);while (!stk.empty()) {const size_type u = stk.top().first, i = stk.top().second; stk.pop();if (i < g[u].size()) {stk.emplace(u, i + 1);const size_type v = g[u][i];if (v == par_[u]) continue;par_[v] = u;depth_[v] = depth_[u] + 1;tree_id_[v] = roots_.size();stk.emplace(v, 0);}else {size_type mx = 0;next[u] = u;sub_size_[u] = 1;for (size_type v : g[u]) {if (v == par_[u]) continue;sub_size_[u] += sub_size_[v];if (mx < sub_size_[v]) {mx = sub_size_[v];next[u] = v;}}}}roots_.emplace_back(i);}heavy_map_.resize(bf_size());in_.resize(bf_size());out_.resize(bf_size());euler_map_.reserve(bf_size());for (size_type root : roots_) {std::stack<std::pair<size_type, size_type>> stk;heavy_map_[root] = head_.size();head_.emplace_back(root);heavy_size_.emplace_back(1);heavy_depth_.emplace_back(0);stk.emplace(root, 0);while (!stk.empty()) {const size_type u = stk.top().first, i = stk.top().second; stk.pop();if (i < g[u].size()) {stk.emplace(u, i + 1);const size_type v = g[u][i];if (v != par_[u] && v != next[u]) {heavy_map_[v] = head_.size();head_.emplace_back(v);heavy_size_.emplace_back(1);heavy_depth_.emplace_back(heavy_depth_[heavy_map_[u]] + 1);stk.emplace(v, 0);}}if (i == 0) {in_[u] = euler_map_.size();euler_map_.emplace_back(u);const size_type v = next[u];if (v != u) {heavy_map_[v] = heavy_map_[u];++heavy_size_[heavy_map_[u]];stk.emplace(v, 0);}}if (i == g[u].size()) out_[u] = euler_map_.size();}}if (!use_lca) return;size_type max_depth = *std::max_element(begin(heavy_depth_), end(heavy_depth_));size_type lglg_n = 0;while ((1 << lglg_n) < max_depth) ++lglg_n;par_dblng_.assign(lglg_n + 1, std::vector<size_type>(af_size()));for (size_type i = 0; i < af_size(); ++i) par_dblng_[0][i] = par_[head_[i]];for (size_type i = 0; i < lglg_n; ++i) {for (size_type j = 0; j < af_size(); ++j) {par_dblng_[i + 1][j] = par_dblng_[i][heavy_map_[par_dblng_[i][j]]];}}}size_type bf_size() const noexcept { return bf_n; }size_type af_size() const noexcept { return head_.size(); }size_type par(size_type v) const { assert(v < bf_size()); return par_[v]; }size_type sub_size(size_type v) const { assert(v < bf_size()); return sub_size_[v]; }size_type depth(size_type v) const { assert(v < bf_size()); return depth_[v]; }size_type tree_id(size_type v) const { assert(v < bf_size()); return tree_id_[v]; }size_type tree_cnt() const noexcept { return roots_.size(); }const std::vector<size_type> & trees() const noexcept { return roots_; }size_type heavy_map(size_type v) const { assert(v < bf_size()); return heavy_map_[v]; }size_type head(size_type k) const { assert(k < af_size()); return head_[k]; }size_type heavy_size(size_type k) const { assert(k < af_size()); return heavy_size_[k]; }size_type heavy_depth(size_type k) const { assert(k < af_size()); return heavy_depth_[k]; }size_type in(size_type v) const { assert(v < bf_size()); return in_[v]; }size_type out(size_type v) const { assert(v < bf_size()); return out_[v]; }size_type euler_map(size_type k) const { assert(k < bf_size()); return euler_map_[k]; }const std::vector<std::vector<size_type>> & par_dblng() const {assert(!par_dblng_.empty());return par_dblng_;}std::pair<size_type, size_type> get_lca_path(size_type x, size_type y) const {assert(!par_dblng_.empty());assert(x < bf_size());assert(y < bf_size());assert(tree_id_[x] == tree_id_[y]);if (heavy_map_[x] == heavy_map_[y]) return {x, y};bool isswap = heavy_depth_[heavy_map_[x]] < heavy_depth_[heavy_map_[y]];if (isswap) std::swap(x, y);const size_type diff = heavy_depth_[heavy_map_[x]] - heavy_depth_[heavy_map_[y]];for (size_type i = par_dblng_.size(); i > 0; --i) {if (diff >> (i - 1) & 1) x = par_dblng_[i - 1][heavy_map_[x]];}if (heavy_map_[x] == heavy_map_[y]) return isswap ? std::make_pair(y, x) : std::make_pair(x, y);for (size_type i = par_dblng_.size(); i > 0; --i) {const size_type p1 = par_dblng_[i - 1][heavy_map_[x]], p2 = par_dblng_[i - 1][heavy_map_[y]];if (heavy_map_[p1] != heavy_map_[p2]) x = p1, y = p2;}x = par_dblng_[0][heavy_map_[x]];y = par_dblng_[0][heavy_map_[y]];return isswap ? std::make_pair(y, x) : std::make_pair(x, y);}size_type get_lca(size_type x, size_type y) {assert(!par_dblng_.empty());assert(x < bf_size());assert(y < bf_size());std::pair<size_type, size_type> res = get_lca_path(x, y);return in_[res.first] < in_[res.second] ? res.first : res.second;}};int main() {using HLD = HeavyLightDecomposition;int N;cin >> N;HLD::Graph hlg(N);vector<vector<pii>> g(N);REP(i, N - 1) {int u, v, w;scanf("%d %d %d", &u, &v, &w);hlg[u].emplace_back(v);hlg[v].emplace_back(u);g[u].emplace_back(v, w);g[v].emplace_back(u, w);}HLD hld(hlg, true);vector<ll> dist(N);auto dfs = [&](auto self, int u, int p) -> void {for (auto [v, d] : g[u]) {if (v == p) continue;dist[v] = dist[u] + d;self(self, v, u);}};dfs(dfs, 0, -1);int Q;cin >> Q;while (Q--) {int x, y, z;scanf("%d %d %d", &x, &y, &z);const int xy = hld.get_lca(x, y);auto func = [&](int i, int j) -> ll {return dist[i] + dist[j] - 2 * dist[hld.get_lca(i, j)];};ll ans = (func(x, y) + func(y, z) + func(x, z)) / 2;printf("%lld\n", ans);}}