結果

問題 No.1394 Changing Problems
ユーザー jelljell
提出日時 2021-02-17 01:17:08
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 61,854 bytes
コンパイル時間 5,181 ms
コンパイル使用メモリ 285,376 KB
実行使用メモリ 25,984 KB
最終ジャッジ日時 2024-09-13 13:13:37
合計ジャッジ時間 32,296 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 827 ms
25,856 KB
testcase_06 AC 1,113 ms
25,856 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 15 ms
6,944 KB
testcase_11 AC 16 ms
6,944 KB
testcase_12 AC 16 ms
6,944 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 1,109 ms
25,956 KB
testcase_17 AC 1,134 ms
25,984 KB
testcase_18 AC 1,103 ms
25,856 KB
testcase_19 AC 1,090 ms
25,856 KB
testcase_20 AC 1,075 ms
25,856 KB
testcase_21 AC 1,076 ms
25,892 KB
testcase_22 AC 1,099 ms
25,976 KB
testcase_23 AC 1,081 ms
25,984 KB
testcase_24 AC 1,101 ms
25,984 KB
testcase_25 AC 1,074 ms
25,972 KB
testcase_26 AC 1,021 ms
25,856 KB
testcase_27 AC 1,042 ms
25,924 KB
testcase_28 AC 1,026 ms
25,856 KB
testcase_29 AC 898 ms
25,856 KB
testcase_30 AC 895 ms
25,856 KB
testcase_31 AC 915 ms
25,856 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "other/y.cc"
// #undef _GLIBCXX_DEBUG
// #define NDEBUG
#include <bits/extc++.h>

#line 2 "Library/lib/alias"

/**
 * @file alias
 * @brief Alias
 */

#line 13 "Library/lib/alias"

#line 2 "Library/lib/bit"

#if __cplusplus > 201703L

#include <bit>

#else

#ifndef _GLIBCXX_BIT
#define _GLIBCXX_BIT 1

#include <limits>
#include <type_traits>

namespace std {

template <typename _Tp> constexpr _Tp __rotl(_Tp __x, int __s) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;
  const int __r = __s % _Nd;
  if (__r == 0)
    return __x;
  else if (__r > 0)
    return (__x << __r) | (__x >> ((_Nd - __r) % _Nd));
  else
    return (__x >> -__r) | (__x << ((_Nd + __r) % _Nd));  // rotr(x, -r)
}

template <typename _Tp> constexpr _Tp __rotr(_Tp __x, int __s) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;
  const int __r = __s % _Nd;
  if (__r == 0)
    return __x;
  else if (__r > 0)
    return (__x >> __r) | (__x << ((_Nd - __r) % _Nd));
  else
    return (__x << -__r) | (__x >> ((_Nd + __r) % _Nd));  // rotl(x, -r)
}

template <typename _Tp> constexpr int __countl_zero(_Tp __x) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;

  if (__x == 0) return _Nd;

  constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
  constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
  constexpr auto _Nd_u = numeric_limits<unsigned>::digits;

  if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) {
    constexpr int __diff = _Nd_u - _Nd;
    return __builtin_clz(__x) - __diff;
  } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) {
    constexpr int __diff = _Nd_ul - _Nd;
    return __builtin_clzl(__x) - __diff;
  } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) {
    constexpr int __diff = _Nd_ull - _Nd;
    return __builtin_clzll(__x) - __diff;
  } else  // (_Nd > _Nd_ull)
  {
    static_assert(_Nd <= (2 * _Nd_ull),
                  "Maximum supported integer size is 128-bit");

    unsigned long long __high = __x >> _Nd_ull;
    if (__high != 0) {
      constexpr int __diff = (2 * _Nd_ull) - _Nd;
      return __builtin_clzll(__high) - __diff;
    }
    constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
    unsigned long long __low = __x & __max_ull;
    return (_Nd - _Nd_ull) + __builtin_clzll(__low);
  }
}

template <typename _Tp> constexpr int __countl_one(_Tp __x) noexcept {
  if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits;
  return __countl_zero<_Tp>((_Tp)~__x);
}

template <typename _Tp> constexpr int __countr_zero(_Tp __x) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;

  if (__x == 0) return _Nd;

  constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
  constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
  constexpr auto _Nd_u = numeric_limits<unsigned>::digits;

  if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
    return __builtin_ctz(__x);
  else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
    return __builtin_ctzl(__x);
  else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
    return __builtin_ctzll(__x);
  else  // (_Nd > _Nd_ull)
  {
    static_assert(_Nd <= (2 * _Nd_ull),
                  "Maximum supported integer size is 128-bit");

    constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
    unsigned long long __low = __x & __max_ull;
    if (__low != 0) return __builtin_ctzll(__low);
    unsigned long long __high = __x >> _Nd_ull;
    return __builtin_ctzll(__high) + _Nd_ull;
  }
}

template <typename _Tp> constexpr int __countr_one(_Tp __x) noexcept {
  if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits;
  return __countr_zero((_Tp)~__x);
}

template <typename _Tp> constexpr int __popcount(_Tp __x) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;

  if (__x == 0) return 0;

  constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
  constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
  constexpr auto _Nd_u = numeric_limits<unsigned>::digits;

  if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
    return __builtin_popcount(__x);
  else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
    return __builtin_popcountl(__x);
  else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
    return __builtin_popcountll(__x);
  else  // (_Nd > _Nd_ull)
  {
    static_assert(_Nd <= (2 * _Nd_ull),
                  "Maximum supported integer size is 128-bit");

    constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
    unsigned long long __low = __x & __max_ull;
    unsigned long long __high = __x >> _Nd_ull;
    return __builtin_popcountll(__low) + __builtin_popcountll(__high);
  }
}

template <typename _Tp> constexpr bool __has_single_bit(_Tp __x) noexcept {
  return __popcount(__x) == 1;
}

template <typename _Tp> constexpr _Tp __bit_ceil(_Tp __x) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;
  if (__x == 0 || __x == 1) return 1;
  auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u));
#ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED
  if (!__builtin_is_constant_evaluated()) {
    __glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits);
  }
#endif
  using __promoted_type = decltype(__x << 1);
  if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) {
    const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2;
    __shift_exponent |= (__shift_exponent & _Nd) << __extra_exp;
  }
  return (_Tp)1u << __shift_exponent;
}

template <typename _Tp> constexpr _Tp __bit_floor(_Tp __x) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;
  if (__x == 0) return 0;
  return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1)));
}

template <typename _Tp> constexpr _Tp __bit_width(_Tp __x) noexcept {
  constexpr auto _Nd = numeric_limits<_Tp>::digits;
  return _Nd - __countl_zero(__x);
}

}  // namespace std

#endif

#endif
#line 2 "Library/lib/limits"

#line 4 "Library/lib/limits"

namespace std {

#if defined(__STRICT_ANSI__) && defined(__SIZEOF_INT128__)

template <> struct numeric_limits<__uint128_t> {
  constexpr static __uint128_t max() { return ~__uint128_t(0); }
  constexpr static __uint128_t min() { return 0; }
};

template <> struct numeric_limits<__int128_t> {
  constexpr static __int128_t max() {
    return numeric_limits<__uint128_t>::max() >> 1;
  }
  constexpr static __int128_t min() { return -max() - 1; }
};

#endif

}  // namespace std
#line 16 "Library/lib/alias"

namespace workspace {

constexpr char eol = '\n';

using namespace std;

using i32 = int_least32_t;
using u32 = uint_least32_t;
using i64 = int_least64_t;
using u64 = uint_least64_t;

#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
#else
#warning 128bit integer is not available.
#endif

template <class T, class Comp = less<T>>
using priority_queue = std::priority_queue<T, vector<T>, Comp>;

template <class T> using stack = std::stack<T, vector<T>>;

template <typename _Tp> constexpr _Tp __bsf(_Tp __x) noexcept {
  return std::__countr_zero(__x);
}

template <typename _Tp> constexpr _Tp __bsr(_Tp __x) noexcept {
  return std::__bit_width(__x) - 1;
}

}  // namespace workspace
#line 2 "Library/lib/cxx20"

/*
 * @file cxx20
 * @brief C++20 Features
 */

#line 9 "Library/lib/cxx20"

#if __cplusplus <= 201703L

#include <algorithm>
#include <vector>

namespace std {

/*
 * @fn erase_if
 * @brief Erase the elements of a container that do not satisfy the condition.
 * @param __cont Container.
 * @param __pred Predicate.
 * @return Number of the erased elements.
 */
template <typename _Tp, typename _Alloc, typename _Predicate>
inline typename vector<_Tp, _Alloc>::size_type erase_if(
    vector<_Tp, _Alloc>& __cont, _Predicate __pred) {
  const auto __osz = __cont.size();
  __cont.erase(remove_if(__cont.begin(), __cont.end(), __pred), __cont.end());
  return __osz - __cont.size();
}

/*
 * @fn erase
 * @brief Erase the elements of a container that are equal to the given value.
 * @param __cont Container.
 * @param __value Value.
 * @return Number of the erased elements.
 */
template <typename _Tp, typename _Alloc, typename _Up>
inline typename vector<_Tp, _Alloc>::size_type erase(
    vector<_Tp, _Alloc>& __cont, const _Up& __value) {
  const auto __osz = __cont.size();
  __cont.erase(remove(__cont.begin(), __cont.end(), __value), __cont.end());
  return __osz - __cont.size();
}

}  // namespace std

#endif
#line 2 "Library/lib/direct"

/*
 * @file direct
 * @brief Pragma Directive
 */

#ifdef ONLINE_JUDGE

#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
#pragma GCC optimize("unroll-loops")

#endif
#line 2 "Library/src/opt/binary_search.hpp"

/*
 * @file binary_search.hpp
 * @brief Binary Search
 */

#line 12 "Library/src/opt/binary_search.hpp"

namespace workspace {

/*
 * @fn binary_search
 * @brief binary search on a discrete range.
 * @param ok pred(ok) is true
 * @param ng pred(ng) is false
 * @param pred the predicate
 * @return the closest point to (ng) where pred is true
 */
template <class Iter, class Pred>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Pred>()(std::declval<Iter>())),
                        bool>::value,
    Iter>::type
binary_search(Iter ok, Iter ng, Pred pred) {
  assert(ok != ng);
  typename std::make_signed<decltype(ng - ok)>::type dist(ng - ok);
  while (1 < dist || dist < -1) {
    const Iter mid(ok + dist / 2);
    if (pred(mid))
      ok = mid, dist -= dist / 2;
    else
      ng = mid, dist /= 2;
  }
  return ok;
}

/*
 * @fn binary_search
 * @brief binary search on the real number line.
 * @param ok pred(ok) is true
 * @param ng pred(ng) is false
 * @param eps the error tolerance
 * @param pred the predicate
 * @return the boundary point
 */
template <class Real, class Pred>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Pred>()(std::declval<Real>())),
                        bool>::value,
    Real>::type
binary_search(Real ok, Real ng, const Real eps, Pred pred) {
  assert(ok != ng);
  for (auto loops = 0; loops != std::numeric_limits<Real>::digits &&
                       (ok + eps < ng || ng + eps < ok);
       ++loops) {
    const Real mid{(ok + ng) / 2};
    (pred(mid) ? ok : ng) = mid;
  }
  return ok;
}

/*
 * @fn parallel_binary_search
 * @brief parallel binary search on discrete ranges.
 * @param ends a vector of pairs; pred(first) is true, pred(second) is false
 * @param pred the predicate
 * @return the closest points to (second) where pred is true
 */
template <class Array,
          class Iter = typename std::decay<
              decltype(std::get<0>(std::declval<Array>()[0]))>::type,
          class Pred>
typename std::enable_if<
    std::is_convertible<
        decltype(std::declval<Pred>()(std::declval<std::vector<Iter>>())[0]),
        bool>::value,
    std::vector<Iter>>::type
parallel_binary_search(Array ends, Pred pred) {
  std::vector<Iter> mids(std::size(ends));
  for (;;) {
    bool all_found = true;
    for (size_t i{}; i != std::size(ends); ++i) {
      const Iter &ok = std::get<0>(ends[i]);
      const Iter &ng = std::get<1>(ends[i]);
      const Iter mid(
          ok + typename std::make_signed<decltype(ng - ok)>::type(ng - ok) / 2);
      if (mids[i] != mid) {
        all_found = false;
        mids[i] = mid;
      }
    }
    if (all_found) break;
    const auto res = pred(mids);
    for (size_t i{}; i != std::size(ends); ++i) {
      (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
    }
  }
  return mids;
}

/*
 * @fn parallel_binary_search
 * @brief parallel binary search on the real number line.
 * @param ends a vector of pairs; pred(first) is true, pred(second) is false
 * @param eps the error tolerance
 * @param pred the predicate
 * @return the boundary points
 */
template <class Array,
          class Real = typename std::decay<
              decltype(std::get<0>(std::declval<Array>()[0]))>::type,
          class Pred>
typename std::enable_if<
    std::is_convertible<
        decltype(std::declval<Pred>()(std::declval<std::vector<Real>>())[0]),
        bool>::value,
    std::vector<Real>>::type
parallel_binary_search(Array ends, const Real eps, Pred pred) {
  std::vector<Real> mids(std::size(ends));
  for (auto loops = 0; loops != std::numeric_limits<Real>::digits; ++loops) {
    bool all_found = true;
    for (size_t i{}; i != std::size(ends); ++i) {
      const Real ok = std::get<0>(ends[i]);
      const Real ng = std::get<1>(ends[i]);
      if (ok + eps < ng || ng + eps < ok) {
        all_found = false;
        mids[i] = (ok + ng) / 2;
      }
    }
    if (all_found) break;
    const auto res = pred(mids);
    for (size_t i{}; i != std::size(ends); ++i) {
      (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
    }
  }
  return mids;
}

}  // namespace workspace
#line 2 "Library/src/opt/exponential_search.hpp"

/*
 * @file exponential_search.hpp
 * @brief Exponential Search
 */

#line 9 "Library/src/opt/exponential_search.hpp"

namespace workspace {

/*
 * @fn exponential_search
 * @brief Exponential search on a discrete range.
 * @param range Range of search, exclusive
 * @param pred Predicate
 * @return Minimum non-negative integer where pred is false.
 */
template <class Index, class Pred>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Pred>()(std::declval<Index>())),
                        bool>::value,
    Index>::type
exponential_search(Index range, Pred pred) {
  Index step(1);
  while (step < range && pred(step)) step <<= 1;
  if (range < step) step = range;
  return binary_search(Index(0), step, pred);
}

/*
 * @fn exponential_search
 * @brief Exponential search on the real number line.
 * @param range Range of search
 * @param eps Error tolerance
 * @param pred Predicate
 * @return Boundary point.
 */
template <class Real, class Pred>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Pred>()(std::declval<Real>())),
                        bool>::value,
    Real>::type
exponential_search(Real range, Real const &eps, Pred pred) {
  Real step(1);
  while (step < range && pred(step)) step += step;
  if (range < step) step = range;
  return binary_search(Real(0), step, eps, pred);
}

}  // namespace workspace
#line 2 "Library/src/opt/trinary_search.hpp"

/*
 * @file trinary_search.hpp
 * @brief Trinary Search
 */

#line 9 "Library/src/opt/trinary_search.hpp"
#include <type_traits>

namespace workspace {

/*
 * @brief Trinary search on discrete range.
 * @param first Left end, inclusive
 * @param last Right end, exclusive
 * @param comp Compare function
 * @return Local minimal point.
 */
template <class Iter, class Comp>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Comp>()(std::declval<Iter>(),
                                                      std::declval<Iter>())),
                        bool>::value,
    Iter>::type
trinary_search(Iter first, Iter last, Comp comp) {
  assert(first < last);
  typename std::make_signed<decltype(last - first)>::type dist(last - first);
  while (2 < dist) {
    Iter left(first + dist / 3), right(first + dist * 2 / 3);
    if (comp(left, right))
      last = right, dist = (dist + dist) / 3;
    else
      first = left, dist -= dist / 3;
  }
  if (1 < dist && comp(first + 1, first)) ++first;
  return first;
}

/*
 * @brief Trinary search on discrete range.
 * @param first Left end, inclusive
 * @param last Right end, exclusive
 * @param func Function
 * @return Local minimal point.
 */
template <class Iter, class Func>
typename std::enable_if<
    std::is_same<decltype(std::declval<Func>()(std::declval<Iter>()), nullptr),
                 std::nullptr_t>::value,
    Iter>::type
trinary_search(Iter const &first, Iter const &last, Func func) {
  return trinary_search(first, last, [&](Iter const &__i, Iter const &__j) {
    return func(__i) < func(__j);
  });
}

/*
 * @brief Trinary search on the real number line.
 * @param first Left end
 * @param last Right end
 * @param eps Error tolerance
 * @param comp Compare function
 * @return Local minimal point.
 */
template <class Real, class Comp>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Comp>()(std::declval<Real>(),
                                                      std::declval<Real>())),
                        bool>::value,
    Real>::type
trinary_search(Real first, Real last, Real const &eps, Comp comp) {
  assert(first < last);
  while (eps < last - first) {
    Real left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};
    if (comp(left, right))
      last = right;
    else
      first = left;
  }
  return first;
}

/*
 * @brief Trinary search on the real number line.
 * @param first Left end
 * @param last Right end
 * @param eps Error tolerance
 * @param func Function
 * @return Local minimal point.
 */
template <class Real, class Func>
typename std::enable_if<
    std::is_same<decltype(std::declval<Func>()(std::declval<Real>()), nullptr),
                 std::nullptr_t>::value,
    Real>::type
trinary_search(Real const &first, Real const &last, Real const &eps,
               Func func) {
  return trinary_search(
      first, last, eps,
      [&](Real const &__i, Real const &__j) { return func(__i) < func(__j); });
}

}  // namespace workspace
#line 2 "Library/src/sys/clock.hpp"

/*
 * @fn clock.hpp
 * @brief Clock
 */

#line 9 "Library/src/sys/clock.hpp"

namespace workspace {

using namespace std::chrono;

namespace internal {
// The start time of the program.
const auto start_time{system_clock::now()};
}  // namespace internal

/*
 * @fn elapsed
 * @return elapsed time of the program
 */
int64_t elapsed() {
  const auto end_time{system_clock::now()};
  return duration_cast<milliseconds>(end_time - internal::start_time).count();
}

}  // namespace workspace
#line 2 "Library/src/sys/ejection.hpp"

/**
 * @file ejection.hpp
 * @brief Ejection
 */

#line 9 "Library/src/sys/ejection.hpp"

namespace workspace {

namespace internal {

struct ejection {
  bool exit = 0;
};

}  // namespace internal

/**
 * @brief eject from a try block, throw nullptr
 * @param arg output
 */
template <class Tp> void eject(Tp const &arg) {
  std::cout << arg << "\n";
  throw internal::ejection{};
}

void exit() { throw internal::ejection{true}; }

}  // namespace workspace
#line 2 "Library/src/sys/iteration.hpp"

/**
 * @file iteration.hpp
 * @brief Case Iteration
 */

#line 9 "Library/src/sys/iteration.hpp"

#line 11 "Library/src/sys/iteration.hpp"

namespace workspace {

void main();

struct {
  // 1-indexed
  unsigned current{0};
  unsigned total{1};

  void read() { (std::cin >> total).ignore(); }

  int iterate() {
    static bool once = false;
    assert(!once);
    once = true;
    while (current++ < total) {
      try {
        main();
      } catch (internal::ejection const& status) {
        if (status.exit) break;
      }
    }
    return 0;
  }
} case_info;

}  // namespace workspace
#line 2 "Library/src/utils/cat.hpp"

/**
 * @file cat.hpp
 * @brief Cat
 */

#line 9 "Library/src/utils/cat.hpp"

namespace workspace {

template <class C1, class C2>
constexpr C1 &&cat(C1 &&__c1, C2 const &__c2) noexcept {
  __c1.insert(__c1.end(), std::begin(__c2), std::end(__c2));
  return __c1;
}

}  // namespace workspace
#line 2 "Library/src/utils/chval.hpp"

/*
 * @file chval.hpp
 * @brief Change Less/Greater
 */

#line 9 "Library/src/utils/chval.hpp"

namespace workspace {

/*
 * @fn chle
 * @brief Substitute y for x if comp(y, x) is true.
 * @param x Reference
 * @param y Const reference
 * @param comp Compare function
 * @return Whether or not x is updated
 */
template <class Tp, class Comp = std::less<Tp>>
bool chle(Tp &x, const Tp &y, Comp comp = Comp()) {
  return comp(y, x) ? x = y, true : false;
}

/*
 * @fn chge
 * @brief Substitute y for x if comp(x, y) is true.
 * @param x Reference
 * @param y Const reference
 * @param comp Compare function
 * @return Whether or not x is updated
 */
template <class Tp, class Comp = std::less<Tp>>
bool chge(Tp &x, const Tp &y, Comp comp = Comp()) {
  return comp(x, y) ? x = y, true : false;
}

}  // namespace workspace
#line 2 "Library/src/utils/fixed_point.hpp"

/**
 * @file fixed_point.hpp
 * @brief Fixed Point Combinator
 */

#line 9 "Library/src/utils/fixed_point.hpp"

namespace workspace {

/**
 * @brief Fixed Point Combinator
 */
template <class _F> class fixed_point {
  _F __fn;

 public:
  /**
   * @param __fn 1st argument callable with the rest of its arguments, and the
   * return type specified.
   */
  fixed_point(_F &&__fn) noexcept : __fn(std::forward<_F>(__fn)) {}

  /**
   * @brief Apply *this to 1st argument.
   * @param __args Rest of arguments.
   */
  template <class... _Args>
  decltype(auto) operator()(_Args &&... __args) const noexcept {
    return __fn(*this, std::forward<_Args>(__args)...);
  }
};

/**
 * @brief Cached version of Fixed Point Combinator
 */
template <class _F> class cached_fixed_point {
  template <class...> struct _cache;

  template <class _G, class _R, class _H, class... _Args>
  struct _cache<_R (_G::*)(_H, _Args...) const>
      : std::map<std::tuple<_Args...>, _R> {};

  using cache =
      _cache<decltype(&_F::template operator()<cached_fixed_point<_F> &>)>;

  _F __fn;
  static cache __ca;

 public:
  /**
   * @param __fn 1st argument callable with the rest of its arguments, and the
   * return type specified.
   */
  cached_fixed_point(_F &&__fn) noexcept : __fn(std::forward<_F>(__fn)) {}

  /**
   * @brief Apply *this to 1st argument.
   * @param __args Rest of arguments.
   */
  template <class... _Args>
  decltype(auto) operator()(_Args &&... __args) noexcept {
    typename cache::key_type __key(__args...);

    if (auto __i = __ca.lower_bound(__key);
        __i != __ca.end() && __i->first == __key)
      return __i->second;

    else
      return __ca
          .emplace_hint(__i, std::move(__key),
                        __fn(*this, std::forward<_Args>(__args)...))
          ->second;
  }
};

template <class _F>
typename cached_fixed_point<_F>::cache cached_fixed_point<_F>::__ca;

}  // namespace workspace
#line 5 "Library/lib/utils"
// #include "src/utils/grid.hpp"
// #include "src/utils/hash.hpp"
#line 2 "Library/src/utils/io/istream.hpp"

/**
 * @file istream.hpp
 * @brief Input Stream
 */

#include <cxxabi.h>

#line 13 "Library/src/utils/io/istream.hpp"

#line 2 "Library/src/utils/sfinae.hpp"

/**
 * @file sfinae.hpp
 * @brief SFINAE
 */

#line 11 "Library/src/utils/sfinae.hpp"

#ifndef __INT128_DEFINED__

#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif

#endif

namespace std {

#if __INT128_DEFINED__

template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };

template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };

#endif

}  // namespace std

namespace workspace {

template <class Tp, class... Args> struct variadic_front { using type = Tp; };

template <class... Args> struct variadic_back;

template <class Tp> struct variadic_back<Tp> { using type = Tp; };

template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
  using type = typename variadic_back<Args...>::type;
};

template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;

template <class Container>
using element_type = typename std::decay<decltype(
    *std::begin(std::declval<Container&>()))>::type;

template <class T, class = std::nullptr_t>
struct has_begin : std::false_type {};

template <class T>
struct has_begin<T, decltype(std::begin(std::declval<T>()), nullptr)>
    : std::true_type {};

template <class T, class = int> struct mapped_of {
  using type = element_type<T>;
};
template <class T>
struct mapped_of<T,
                 typename std::pair<int, typename T::mapped_type>::first_type> {
  using type = typename T::mapped_type;
};
template <class T> using mapped_type = typename mapped_of<T>::type;

template <class T, class = void> struct is_integral_ext : std::false_type {};
template <class T>
struct is_integral_ext<
    T, typename std::enable_if<std::is_integral<T>::value>::type>
    : std::true_type {};

#if __INT128_DEFINED__

template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};

#endif

#if __cplusplus >= 201402

template <class T>
constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;

#endif

template <typename T, typename = void> struct multiplicable_uint {
  using type = uint_least32_t;
};
template <typename T>
struct multiplicable_uint<
    T, typename std::enable_if<(2 < sizeof(T)) &&
                               (!__INT128_DEFINED__ || sizeof(T) <= 4)>::type> {
  using type = uint_least64_t;
};

#if __INT128_DEFINED__

template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {
  using type = __uint128_t;
};

#endif

template <typename T> struct multiplicable_int {
  using type =
      typename std::make_signed<typename multiplicable_uint<T>::type>::type;
};

}  // namespace workspace
#line 15 "Library/src/utils/io/istream.hpp"

namespace workspace {

namespace internal {

template <class Tp, typename = std::nullptr_t> struct istream_helper {
  istream_helper(std::istream &is, Tp &x) {
    if constexpr (has_begin<Tp>::value)
      for (auto &&e : x)
        istream_helper<typename std::decay<decltype(e)>::type>(is, e);
    else
      static_assert(has_begin<Tp>::value, "istream unsupported type.");
  }
};

template <class Tp>
struct istream_helper<
    Tp,
    decltype(std::declval<std::decay<decltype(std::declval<std::istream &>() >>
                                              std::declval<Tp &>())>>(),
             nullptr)> {
  istream_helper(std::istream &is, Tp &x) { is >> x; }
};

#ifdef __SIZEOF_INT128__

template <> struct istream_helper<__uint128_t, std::nullptr_t> {
  istream_helper(std::istream &__is, __uint128_t &__x) {
    std::string __s;
    __is >> __s;
    bool __neg = false;
    if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
    __x = 0;
    for (char __d : __s) {
      __x *= 10;
      __d -= '0';
      if (__neg)
        __x -= __d;
      else
        __x += __d;
    }
  }
};

template <> struct istream_helper<__int128_t, std::nullptr_t> {
  istream_helper(std::istream &__is, __int128_t &__x) {
    std::string __s;
    __is >> __s;
    bool __neg = false;
    if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
    __x = 0;
    for (char __d : __s) {
      __x *= 10;
      __d -= '0';
      if (__neg)
        __x -= __d;
      else
        __x += __d;
    }
  }
};

#endif  // INT128

template <class T1, class T2> struct istream_helper<std::pair<T1, T2>> {
  istream_helper(std::istream &is, std::pair<T1, T2> &x) {
    istream_helper<T1>(is, x.first), istream_helper<T2>(is, x.second);
  }
};

template <class... Tps> struct istream_helper<std::tuple<Tps...>> {
  istream_helper(std::istream &is, std::tuple<Tps...> &x) { iterate(is, x); }

 private:
  template <class Tp, size_t N = 0> void iterate(std::istream &is, Tp &x) {
    if constexpr (N == std::tuple_size<Tp>::value)
      return;
    else
      istream_helper<typename std::tuple_element<N, Tp>::type>(is,
                                                               std::get<N>(x)),
          iterate<Tp, N + 1>(is, x);
  }
};

}  // namespace internal

/**
 * @brief A wrapper class for std::istream.
 */
class istream : public std::istream {
 public:
  /**
   * @brief Wrapped operator.
   */
  template <typename Tp> istream &operator>>(Tp &x) {
    internal::istream_helper<Tp>(*this, x);
    if (std::istream::fail()) {
      static auto once = atexit([] {
        std::cerr << "\n\033[43m\033[30mwarning: failed to read \'"
                  << abi::__cxa_demangle(typeid(Tp).name(), 0, 0, 0)
                  << "\'.\033[0m\n\n";
      });
      assert(!once);
    }
    return *this;
  }
};

decltype(auto) cin = static_cast<istream &>(std::cin);

}  // namespace workspace
#line 2 "Library/src/utils/io/ostream.hpp"

/**
 * @file ostream.hpp
 * @brief Output Stream
 */

#line 9 "Library/src/utils/io/ostream.hpp"

namespace workspace {

/**
 * @brief Stream insertion operator for C-style array.
 *
 * @param __os Output stream
 * @param __a Array
 * @return Reference to __os.
 */
template <class _Os, class _Tp, size_t _Nm>
typename std::enable_if<bool(sizeof(_Tp) > 2), _Os &>::type operator<<(
    _Os &__os, const _Tp (&__a)[_Nm]) {
  if constexpr (_Nm) {
    __os << *__a;
    for (auto __i = __a + 1, __e = __a + _Nm; __i != __e; ++__i)
      __os << ' ' << *__i;
  }
  return __os;
}

/**
 * @brief Stream insertion operator for std::pair.
 *
 * @param __os Output stream
 * @param __p Pair
 * @return Reference to __os.
 */
template <class _Os, class _T1, class _T2>
_Os &operator<<(_Os &__os, const std::pair<_T1, _T2> &__p) {
  return __os << __p.first << ' ' << __p.second;
}

/**
 * @brief Stream insertion operator for std::tuple.
 *
 * @param __os Output stream
 * @param __t Tuple
 * @return Reference to __os.
 */
template <class _Os, class _Tp, size_t _Nm = 0>
typename std::enable_if<bool(std::tuple_size<_Tp>::value + 1), _Os &>::type
operator<<(_Os &__os, const _Tp &__t) {
  if constexpr (_Nm != std::tuple_size<_Tp>::value) {
    if constexpr (_Nm) __os << ' ';
    __os << std::get<_Nm>(__t);
    operator<<<_Os, _Tp, _Nm + 1>(__os, __t);
  }
  return __os;
}

template <class _Os, class _Container,
          typename = decltype(std::begin(std::declval<_Container>()))>
typename std::enable_if<
    !std::is_same<typename std::decay<_Container>::type, std::string>::value &&
        !std::is_same<typename std::decay<_Container>::type, char *>::value,
    _Os &>::type
operator<<(_Os &__os, const _Container &__cont) {
  bool __h = true;
  for (auto &&__e : __cont) __h ? __h = 0 : (__os << ' ', 0), __os << __e;
  return __os;
}

#ifdef __SIZEOF_INT128__

/**
 * @brief Stream insertion operator for __int128_t.
 *
 * @param __os Output Stream
 * @param __x 128-bit integer
 * @return Reference to __os.
 */
template <class _Os> _Os &operator<<(_Os &__os, __int128_t __x) {
  if (!__x) return __os << '0';
  if (__x < 0) __os << '-';
  char __s[40], *__p = __s;
  while (__x) {
    auto __d = __x % 10;
    *__p++ = '0' + (__x < 0 ? -__d : __d);
    __x /= 10;
  }
  *__p = 0;
  for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
  return __os << __s;
}

/**
 * @brief Stream insertion operator for __uint128_t.
 *
 * @param __os Output Stream
 * @param __x 128-bit unsigned integer
 * @return Reference to __os.
 */
template <class _Os> _Os &operator<<(_Os &__os, __uint128_t __x) {
  if (!__x) return __os << '0';
  char __s[40], *__p = __s;
  while (__x) *__p++ = '0' + __x % 10, __x /= 10;
  *__p = 0;
  for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
  return __os << __s;
}

#endif

}  // namespace workspace
#line 9 "Library/lib/utils"
// #include "src/utils/io/read.hpp"
#line 2 "Library/src/utils/io/setup.hpp"

/*
 * @file setup.hpp
 * @brief I/O Setup
 */

#line 10 "Library/src/utils/io/setup.hpp"

namespace workspace {

/*
 * @fn io_setup
 * @brief Setup I/O.
 * @param precision Standard output precision
 */
void io_setup(int precision) {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  std::cout << std::fixed << std::setprecision(precision);

#ifdef _buffer_check
  atexit([] {
    char bufc;
    if (std::cin >> bufc)
      std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
  });
#endif
}

}  // namespace workspace
#line 2 "Library/src/utils/iterator/category.hpp"

/*
 * @file category.hpp
 * @brief Iterator Category
 */

#line 10 "Library/src/utils/iterator/category.hpp"

namespace workspace {

/*
 * @tparam Tuple Tuple of iterator types
 */
template <class Tuple, size_t N = std::tuple_size<Tuple>::value - 1>
struct common_iterator_category {
  using type = typename std::common_type<
      typename common_iterator_category<Tuple, N - 1>::type,
      typename std::iterator_traits<typename std::tuple_element<
          N, Tuple>::type>::iterator_category>::type;
};

template <class Tuple> struct common_iterator_category<Tuple, 0> {
  using type = typename std::iterator_traits<
      typename std::tuple_element<0, Tuple>::type>::iterator_category;
};

}  // namespace workspace
#line 2 "Library/src/utils/iterator/reverse.hpp"

/*
 * @file reverse_iterator.hpp
 * @brief Reverse Iterator
 */

#if __cplusplus >= 201703L

#include <iterator>
#include <optional>

namespace workspace {

/*
 * @class reverse_iterator
 * @brief Wrapper class for `std::reverse_iterator`.
 * @see http://gcc.gnu.org/PR51823
 */
template <class Iterator>
class reverse_iterator : public std::reverse_iterator<Iterator> {
  using base_std = std::reverse_iterator<Iterator>;
  std::optional<typename base_std::value_type> deref;

 public:
  using base_std::reverse_iterator;

  constexpr typename base_std::reference operator*() noexcept {
    if (!deref) {
      Iterator tmp = base_std::current;
      deref = *--tmp;
    }
    return deref.value();
  }

  constexpr reverse_iterator &operator++() noexcept {
    base_std::operator++();
    deref.reset();
    return *this;
  }
  constexpr reverse_iterator &operator--() noexcept {
    base_std::operator++();
    deref.reset();
    return *this;
  }
  constexpr reverse_iterator operator++(int) noexcept {
    base_std::operator++();
    deref.reset();
    return *this;
  }
  constexpr reverse_iterator operator--(int) noexcept {
    base_std::operator++();
    deref.reset();
    return *this;
  }
};

}  // namespace workspace

#endif
#line 2 "Library/src/utils/make_vector.hpp"

/*
 * @file make_vector.hpp
 * @brief Multi-dimensional Vector
 */

#if __cplusplus >= 201703L

#include <tuple>
#include <vector>

namespace workspace {

/*
 * @brief Make a multi-dimensional vector.
 * @tparam Tp type of the elements
 * @tparam N dimension
 * @tparam S integer type
 * @param sizes The size of each dimension
 * @param init The initial value
 */
template <typename Tp, size_t N, typename S>
constexpr auto make_vector([[maybe_unused]] S* sizes, Tp const& init = Tp()) {
  static_assert(std::is_convertible_v<S, size_t>);
  if constexpr (N)
    return std::vector(*sizes,
                       make_vector<Tp, N - 1, S>(std::next(sizes), init));
  else
    return init;
}

/*
 * @brief Make a multi-dimensional vector.
 * @param sizes The size of each dimension
 * @param init The initial value
 */
template <typename Tp, size_t N, typename S>
constexpr auto make_vector(const S (&sizes)[N], Tp const& init = Tp()) {
  return make_vector<Tp, N, S>((S*)sizes, init);
}

/*
 * @brief Make a multi-dimensional vector.
 * @param sizes The size of each dimension
 * @param init The initial value
 */
template <typename Tp, size_t N, typename S, size_t I = 0>
constexpr auto make_vector([[maybe_unused]] std::array<S, N> const& sizes,
                           Tp const& init = Tp()) {
  static_assert(std::is_convertible_v<S, size_t>);
  if constexpr (I == N)
    return init;
  else
    return std::vector(sizes[I], make_vector<Tp, N, S, I + 1>(sizes, init));
}

/*
 * @brief Make a multi-dimensional vector.
 * @param sizes The size of each dimension
 * @param init The initial value
 */
template <typename Tp, size_t N = SIZE_MAX, size_t I = 0, class... Args>
constexpr auto make_vector([[maybe_unused]] std::tuple<Args...> const& sizes,
                           Tp const& init = Tp()) {
  using tuple_type = std::tuple<Args...>;
  if constexpr (I == std::tuple_size_v<tuple_type> || I == N)
    return init;
  else {
    static_assert(
        std::is_convertible_v<std::tuple_element_t<I, tuple_type>, size_t>);
    return std::vector(std::get<I>(sizes),
                       make_vector<Tp, N, I + 1>(sizes, init));
  }
}

/*
 * @brief Make a multi-dimensional vector.
 * @param sizes The size of each dimension
 * @param init The initial value
 */
template <typename Tp, class Fst, class Snd>
constexpr auto make_vector(std::pair<Fst, Snd> const& sizes,
                           Tp const& init = Tp()) {
  static_assert(std::is_convertible_v<Fst, size_t>);
  static_assert(std::is_convertible_v<Snd, size_t>);
  return make_vector({(size_t)sizes.first, (size_t)sizes.second}, init);
}

}  // namespace workspace

#endif
#line 2 "Library/src/utils/py-like/enumerate.hpp"

/*
 * @file enumerate.hpp
 * @brief Enumerate
 */

#line 2 "Library/src/utils/py-like/range.hpp"

/**
 * @file range.hpp
 * @brief Range
 */

#line 9 "Library/src/utils/py-like/range.hpp"

#line 2 "Library/src/utils/py-like/reversed.hpp"

/**
 * @file reversed.hpp
 * @brief Reversed
 */

#include <initializer_list>
#line 10 "Library/src/utils/py-like/reversed.hpp"

namespace workspace {

namespace internal {

template <class Container> class reversed {
  Container cont;

 public:
  constexpr reversed(Container &&cont) : cont(cont) {}

  constexpr auto begin() { return std::rbegin(cont); }
  constexpr auto end() { return std::rend(cont); }
};

}  // namespace internal

template <class Container> constexpr auto reversed(Container &&cont) noexcept {
  return internal::reversed<Container>{std::forward<Container>(cont)};
}

template <class Tp>
constexpr auto reversed(std::initializer_list<Tp> &&cont) noexcept {
  return internal::reversed<std::initializer_list<Tp>>{
      std::forward<std::initializer_list<Tp>>(cont)};
}

}  // namespace workspace
#line 12 "Library/src/utils/py-like/range.hpp"

#if __cplusplus >= 201703L

namespace workspace {

template <class Index> class range {
  Index first, last;

 public:
  class iterator {
    Index current;

   public:
    using difference_type = std::ptrdiff_t;
    using value_type = Index;
    using reference = typename std::add_const<Index>::type &;
    using pointer = iterator;
    using iterator_category = std::bidirectional_iterator_tag;

    constexpr iterator(Index const &__i = Index()) noexcept : current(__i) {}

    constexpr bool operator==(iterator const &rhs) const noexcept {
      return current == rhs.current;
    }
    constexpr bool operator!=(iterator const &rhs) const noexcept {
      return current != rhs.current;
    }

    constexpr iterator &operator++() noexcept {
      ++current;
      return *this;
    }
    constexpr iterator &operator--() noexcept {
      --current;
      return *this;
    }

    constexpr reference operator*() const noexcept { return current; }
  };

  constexpr range(Index first, Index last) noexcept
      : first(first), last(last) {}
  constexpr range(Index last) noexcept : first(), last(last) {}

  constexpr iterator begin() const noexcept { return iterator{first}; }
  constexpr iterator end() const noexcept { return iterator{last}; }

  constexpr reverse_iterator<iterator> rbegin() const noexcept {
    return reverse_iterator<iterator>(end());
  }
  constexpr reverse_iterator<iterator> rend() const noexcept {
    return reverse_iterator<iterator>(begin());
  }
};

template <class... Args> constexpr auto rrange(Args &&... args) noexcept {
  return internal::reversed(range(std::forward<Args>(args)...));
}

}  // namespace workspace

#endif
#line 2 "Library/src/utils/py-like/zip.hpp"

/**
 * @file zip.hpp
 * @brief Zip
 */

#line 11 "Library/src/utils/py-like/zip.hpp"

#line 14 "Library/src/utils/py-like/zip.hpp"

#if __cplusplus >= 201703L

namespace workspace {

namespace internal {

template <class> struct zipped_iterator;

template <class...> struct zipped_iterator_tuple;

template <class... Args> class zipped {
  using ref_tuple = std::tuple<Args...>;
  ref_tuple args;

  template <size_t N = 0> constexpr auto begin_cat() const noexcept {
    if constexpr (N != std::tuple_size<ref_tuple>::value) {
      return std::tuple_cat(std::tuple(std::begin(std::get<N>(args))),
                            begin_cat<N + 1>());
    } else
      return std::tuple<>();
  }

  template <size_t N = 0> constexpr auto end_cat() const noexcept {
    if constexpr (N != std::tuple_size<ref_tuple>::value) {
      return std::tuple_cat(std::tuple(std::end(std::get<N>(args))),
                            end_cat<N + 1>());
    } else
      return std::tuple<>();
  }

 public:
  constexpr zipped(Args &&... args) noexcept : args(args...) {}

  class iterator {
    using base_tuple = typename zipped_iterator_tuple<Args...>::type;

   public:
    using iterator_category =
        typename common_iterator_category<base_tuple>::type;
    using difference_type = std::ptrdiff_t;
    using value_type = zipped_iterator<base_tuple>;
    using reference = zipped_iterator<base_tuple> &;
    using pointer = iterator;

   protected:
    value_type current;

    template <size_t N = 0>
    constexpr bool equal(const iterator &rhs) const noexcept {
      if constexpr (N != std::tuple_size<base_tuple>::value) {
        return std::get<N>(current) == std::get<N>(rhs.current) ||
               equal<N + 1>(rhs);
      } else
        return false;
    }

    template <size_t N = 0> constexpr void increment() noexcept {
      if constexpr (N != std::tuple_size<base_tuple>::value) {
        ++std::get<N>(current);
        increment<N + 1>();
      }
    }

    template <size_t N = 0> constexpr void decrement() noexcept {
      if constexpr (N != std::tuple_size<base_tuple>::value) {
        --std::get<N>(current);
        decrement<N + 1>();
      }
    }

    template <size_t N = 0>
    constexpr void advance(difference_type __d) noexcept {
      if constexpr (N != std::tuple_size<base_tuple>::value) {
        std::get<N>(current) += __d;
        advance<N + 1>(__d);
      }
    }

   public:
    constexpr iterator() noexcept = default;
    constexpr iterator(base_tuple const &current) noexcept : current(current) {}

    constexpr bool operator==(const iterator &rhs) const noexcept {
      return equal(rhs);
    }
    constexpr bool operator!=(const iterator &rhs) const noexcept {
      return !equal(rhs);
    }

    constexpr iterator &operator++() noexcept {
      increment();
      return *this;
    }
    constexpr iterator &operator--() noexcept {
      decrement();
      return *this;
    }

    constexpr bool operator<(const iterator &rhs) const noexcept {
      return std::get<0>(current) < std::get<0>(rhs.current);
    }

    constexpr bool operator<=(const iterator &rhs) const noexcept {
      return std::get<0>(current) <= std::get<0>(rhs.current);
    }

    constexpr iterator &operator+=(difference_type __d) noexcept {
      advance(__d);
      return *this;
    }

    constexpr iterator &operator-=(difference_type __d) noexcept {
      advance(-__d);
      return *this;
    }

    constexpr iterator operator+(difference_type __d) const noexcept {
      return iterator{*this} += __d;
    }

    constexpr iterator operator-(difference_type __d) const noexcept {
      return iterator{*this} -= __d;
    }

    constexpr difference_type operator-(const iterator &rhs) const noexcept {
      return std::get<0>(current) - std::get<0>(rhs.current);
    }

    constexpr reference operator*() noexcept { return current; }
  };

  constexpr iterator begin() const noexcept { return iterator{begin_cat()}; }
  constexpr iterator end() const noexcept { return iterator{end_cat()}; }

  constexpr reverse_iterator<iterator> rbegin() const noexcept {
    return reverse_iterator<iterator>{end()};
  }
  constexpr reverse_iterator<iterator> rend() const noexcept {
    return reverse_iterator<iterator>{begin()};
  }
};

template <class Tp, class... Args> struct zipped_iterator_tuple<Tp, Args...> {
  using type = decltype(std::tuple_cat(
      std::declval<std::tuple<decltype(std::begin(std::declval<Tp>()))>>(),
      std::declval<typename zipped_iterator_tuple<Args...>::type>()));
};

template <> struct zipped_iterator_tuple<> { using type = std::tuple<>; };

template <class Iter_tuple> struct zipped_iterator : Iter_tuple {
  constexpr zipped_iterator(Iter_tuple const &__t) noexcept
      : Iter_tuple::tuple(__t) {}

  constexpr zipped_iterator(zipped_iterator const &__t) = default;

  constexpr zipped_iterator &operator=(zipped_iterator const &__t) = default;

  // Avoid move initialization.
  constexpr zipped_iterator(zipped_iterator &&__t)
      : zipped_iterator(static_cast<zipped_iterator const &>(__t)) {}

  // Avoid move assignment.
  zipped_iterator &operator=(zipped_iterator &&__t) {
    return operator=(static_cast<zipped_iterator const &>(__t));
  }

  template <size_t N>
  friend constexpr auto &get(zipped_iterator<Iter_tuple> const &__z) noexcept {
    return *std::get<N>(__z);
  }

  template <size_t N>
  friend constexpr auto get(zipped_iterator<Iter_tuple> &&__z) noexcept {
    return *std::get<N>(__z);
  }
};

}  // namespace internal

}  // namespace workspace

namespace std {

template <size_t N, class Iter_tuple>
struct tuple_element<N, workspace::internal::zipped_iterator<Iter_tuple>> {
  using type = typename remove_reference<typename iterator_traits<
      typename tuple_element<N, Iter_tuple>::type>::reference>::type;
};

template <class Iter_tuple>
struct tuple_size<workspace::internal::zipped_iterator<Iter_tuple>>
    : tuple_size<Iter_tuple> {};

}  // namespace std

namespace workspace {

template <class... Args> constexpr auto zip(Args &&... args) noexcept {
  return internal::zipped<Args...>(std::forward<Args>(args)...);
}

template <class... Args>
constexpr auto zip(std::initializer_list<Args> const &... args) noexcept {
  return internal::zipped<const std::initializer_list<Args>...>(args...);
}

}  // namespace workspace

#endif
#line 10 "Library/src/utils/py-like/enumerate.hpp"

#if __cplusplus >= 201703L

namespace workspace {

constexpr size_t min_size() noexcept { return SIZE_MAX; }

template <class Container, class... Args>
constexpr size_t min_size(Container const &cont, Args &&... args) noexcept {
  return std::min(std::size(cont), min_size(std::forward<Args>(args)...));
}

template <class... Args> constexpr auto enumerate(Args &&... args) noexcept {
  return zip(range(min_size(args...)), std::forward<Args>(args)...);
}

template <class... Args>
constexpr auto enumerate(std::initializer_list<Args> const &... args) noexcept {
  return zip(range(min_size(args...)), std::vector(args)...);
}

}  // namespace workspace

#endif
#line 16 "Library/lib/utils"
// #include "src/utils/py-like/reversed.hpp"
// #include "src/utils/py-like/zip.hpp"
// #include "src/utils/rand/rng.hpp"
// #include "src/utils/rand/shuffle.hpp"
#line 2 "Library/src/utils/round_div.hpp"

/*
 * @file round_div.hpp
 * @brief Round Integer Division
 */

#line 9 "Library/src/utils/round_div.hpp"

#line 11 "Library/src/utils/round_div.hpp"

namespace workspace {

/*
 * @fn floor_div
 * @brief floor of fraction.
 * @param x the numerator
 * @param y the denominator
 * @return maximum integer z s.t. z <= x / y
 * @note y must be nonzero.
 */
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
                                   is_integral_ext<T2>::value),
                                  typename std::common_type<T1, T2>::type>::type
floor_div(T1 x, T2 y) {
  assert(y != 0);
  if (y < 0) x = -x, y = -y;
  return x < 0 ? (x - y + 1) / y : x / y;
}

/*
 * @fn ceil_div
 * @brief ceil of fraction.
 * @param x the numerator
 * @param y the denominator
 * @return minimum integer z s.t. z >= x / y
 * @note y must be nonzero.
 */
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
                                   is_integral_ext<T2>::value),
                                  typename std::common_type<T1, T2>::type>::type
ceil_div(T1 x, T2 y) {
  assert(y != 0);
  if (y < 0) x = -x, y = -y;
  return x < 0 ? x / y : (x + y - 1) / y;
}

}  // namespace workspace
#line 21 "Library/lib/utils"
// #include "src/utils/sfinae.hpp"
#line 12 "other/y.cc"

signed main() {
  using namespace workspace;

  io_setup(15);

  /* given
    case_info.read();  //*/

  /* unspecified
    case_info.total = -1;  //*/

  return case_info.iterate();
}

#line 2 "Library/src/data_structure/segment_tree/lazy.hpp"

/*
 * @file lazy.hpp
 * @brief Lazy Segment Tree
 */

#line 11 "Library/src/data_structure/segment_tree/lazy.hpp"

#line 2 "Library/src/algebra/system/monoid.hpp"

/*
 * @file monoid.hpp
 * @brief Monoid
 */

#line 9 "Library/src/algebra/system/monoid.hpp"

namespace workspace {

template <class T, class E = T> struct min_monoid {
  using value_type = T;
  static T min, max;
  T value;
  min_monoid() : value(max) {}
  min_monoid(const T &value) : value(value) {}
  operator T() const { return value; }
  min_monoid operator+(const min_monoid &rhs) const {
    return value < rhs.value ? *this : rhs;
  }
  min_monoid operator*(const E &rhs) const;
};

template <class T, class E>
T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2;
template <class T, class E>
T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2;

template <class T, class E = T> struct max_monoid : min_monoid<T, E> {
  using base = min_monoid<T, E>;
  using base::min_monoid;
  max_monoid() : base(base::min) {}
  max_monoid operator+(const max_monoid &rhs) const {
    return !(base::value < rhs.value) ? *this : rhs;
  }
  max_monoid operator*(const E &rhs) const;
};

}  // namespace workspace
#line 2 "Library/src/data_structure/segment_tree/waitings.hpp"

#line 5 "Library/src/data_structure/segment_tree/waitings.hpp"

namespace workspace {

namespace internal {

struct waitings : std::queue<size_t> {
  waitings(size_t n) : in(n) {}

  bool push(size_t index) {
    // assert(index < in.size());
    if (in[index]) return false;
    emplace(index);
    return (in[index] = true);
  }

  size_t pop() {
    // assert(!empty());
    auto index = front();
    std::queue<size_t>::pop();
    in[index] = false;
    return index;
  }

 private:
  std::vector<int_least8_t> in;
};

}  // namespace internal

}  // namespace workspace
#line 15 "Library/src/data_structure/segment_tree/lazy.hpp"

namespace workspace {

template <class Monoid, class Endomorphism,
          class Monoid_container = std::vector<Monoid>,
          class Endomorphism_container = std::vector<Endomorphism>>
class lazy_segment_tree {
  static_assert(std::is_same<Monoid, mapped_type<Monoid_container>>::value);

  static_assert(
      std::is_same<Endomorphism, mapped_type<Endomorphism_container>>::value);

  static_assert(
      std::is_assignable<Monoid &, decltype(std::declval<Monoid>() +
                                            std::declval<Monoid>())>::value,
      "\'Monoid\' has no proper binary \'operator+\'.");

  static_assert(
      std::is_assignable<Endomorphism &,
                         decltype(std::declval<Endomorphism>() *
                                  std::declval<Endomorphism>())>::value,
      "\'Endomorphism\' has no proper binary operator*.");

  static_assert(std::is_assignable<
                    Monoid &, decltype(std::declval<Monoid>() *
                                       std::declval<Endomorphism>())>::value,
                "\'Endomorphism\' is not applicable to \'Monoid\'.");

  size_t size_orig, height, size_ext;
  Monoid_container data;
  Endomorphism_container lazy;
  internal::waitings wait;

  void repair() {
    while (!wait.empty()) {
      const size_t index = wait.pop() >> 1;
      if (index && wait.push(index)) pull(index);
    }
  }

  void apply(size_t node, const Endomorphism &endo) {
    data[node] = data[node] * endo;
    if (node < size_ext) lazy[node] = lazy[node] * endo;
  }

  void push(size_t node) {
    apply(node << 1, lazy[node]);
    apply(node << 1 | 1, lazy[node]);
    lazy[node] = Endomorphism{};
  }

  void pull(size_t node) { data[node] = data[node << 1] + data[node << 1 | 1]; }

  template <class Pred>
  static constexpr decltype(std::declval<Pred>()(Monoid{})) pass_args(
      Pred pred, Monoid const &_1, [[maybe_unused]] size_t _2) {
    return pred(_1);
  }

  template <class Pred>
  static constexpr decltype(std::declval<Pred>()(Monoid{}, size_t{})) pass_args(
      Pred pred, Monoid const &_1, size_t _2) {
    return pred(_1, _2);
  }

  template <class Pred>
  size_t left_partition_subtree(size_t node, Monoid mono, size_t step,
                                Pred pred) {
    assert(node);
    while (node < size_ext) {
      push(node);
      const Monoid tmp = data[(node <<= 1) | 1] + mono;
      if (pass_args(pred, tmp, ((node | 1) << --step) ^ size_ext))
        mono = tmp;
      else
        ++node;
    }
    return ++node -= size_ext;
  }

  template <class Pred>
  size_t right_partition_subtree(size_t node, Monoid mono, size_t step,
                                 Pred pred) {
    assert(node);
    while (node < size_ext) {
      push(node);
      const Monoid tmp = mono + data[node <<= 1];
      if (pass_args(pred, tmp, ((node | 1) << --step) ^ size_ext))
        ++node, mono = tmp;
    }
    return (node -= size_ext) < size_orig ? node : size_orig;
  }

 public:
  class iterator {
    lazy_segment_tree *__p;
    size_t __i;

   public:
    using difference_type = typename std::make_signed<size_t>::type;
    using value_type = Monoid;
    using reference = Monoid &;
    using pointer = iterator;
    using iterator_category = std::random_access_iterator_tag;

    /**
     * @brief Construct a new iterator object
     *
     */
    iterator() = default;

    /**
     * @brief Construct a new iterator object
     *
     * @param __p Pointer to a segment tree object
     * @param __i Index
     */
    iterator(lazy_segment_tree *__p, size_t __i) : __p(__p), __i(__i) {}

    bool operator==(iterator const &rhs) const {
      return __p == rhs.__p && __i == rhs.__i;
    }
    bool operator!=(iterator const &rhs) const { return !operator==(rhs); }

    bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
    bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
    bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
    bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }

    iterator &operator++() { return ++__i, *this; }
    iterator &operator--() { return --__i, *this; }

    difference_type operator-(iterator const &rhs) const {
      return __i - rhs.__i;
    }

    /**
     * @brief
     *
     * @return reference
     */
    reference operator*() const { return __p->operator[](__i); }
  };

  using value_type = typename iterator::value_type;
  using reference = typename iterator::reference;

  iterator begin() { return {this, 0}; }
  iterator end() { return {this, size_orig}; }

  auto rbegin() { return std::make_reverse_iterator(end()); }
  auto rend() { return std::make_reverse_iterator(begin()); }

  lazy_segment_tree(size_t n = 0)
      : size_orig{n},
        height(n > 1 ? 32 - __builtin_clz(n - 1) : 0),
        size_ext{1u << height},
        data(size_ext << 1),
        lazy(size_ext),
        wait(size_ext << 1) {}

  lazy_segment_tree(size_t n, const Monoid &init) : lazy_segment_tree(n) {
    std::fill(std::next(std::begin(data), size_ext), std::end(data), init);
    for (size_t i{size_ext}; --i;) pull(i);
  }

  template <class iter_type, class value_type = typename std::iterator_traits<
                                 iter_type>::value_type>
  lazy_segment_tree(iter_type first, iter_type last)
      : size_orig(std::distance(first, last)),
        height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0),
        size_ext{1u << height},
        data(size_ext << 1),
        lazy(size_ext),
        wait(size_ext << 1) {
    static_assert(std::is_constructible<Monoid, value_type>::value,
                  "Monoid(iter_type::value_type) is not constructible.");
    for (auto iter{std::next(std::begin(data), size_ext)};
         iter != std::end(data) && first != last; ++iter, ++first)
      *iter = Monoid(*first);
    for (size_t i{size_ext}; --i;) pull(i);
  }

  template <class Container, typename = element_type<Container>>
  lazy_segment_tree(const Container &cont)
      : lazy_segment_tree(std::begin(cont), std::end(cont)) {}

  /**
   * @return Number of elements.
   */
  size_t size() const { return size_orig; }

  /**
   * @param index Index of the element
   * @return Reference to the element.
   */
  Monoid &operator[](size_t index) {
    assert(index < size_orig);
    index |= size_ext;
    wait.push(index);
    for (size_t i = height; i; --i) push(index >> i);
    return data[index];
  }

  void update(const Endomorphism &endo) { update(0, size_orig, endo); }

  void update(size_t index, const Endomorphism &endo) {
    update(index, index + 1, endo);
  }

  void update(size_t first, size_t last, const Endomorphism &endo) {
    assert(last <= size_orig);
    repair();
    if (first >= last) return;
    first += size_ext, last += size_ext;
    --last;
    for (size_t i = height; i; --i) push(first >> i), push(last >> i);
    ++last;
    for (size_t l = first, r = last; l != r; l >>= 1, r >>= 1) {
      if (l & 1) apply(l++, endo);
      if (r & 1) apply(--r, endo);
    }
    for (first >>= __builtin_ffs(first); first; first >>= 1) pull(first);
    for (last >>= __builtin_ffs(last); last; last >>= 1) pull(last);
  }

  /**
   * @param first Left end, inclusive
   * @param last Right end, exclusive
   * @return Sum of elements in the interval.
   */
  Monoid fold(size_t first, size_t last) {
    assert(last <= size_orig);
    repair();
    if (first >= last) return Monoid{};
    first += size_ext, last += size_ext - 1;
    Monoid left_val{}, right_val{};
    for (size_t l = first, r = last + 1; l != r; l >>= 1, r >>= 1) {
      if (l & 1) left_val = left_val + data[l++];
      if (r & 1) right_val = data[--r] + right_val;
      left_val = left_val * lazy[first >>= 1];
      right_val = right_val * lazy[last >>= 1];
    }
    while (first >>= 1, last >>= 1) {
      left_val = left_val * lazy[first];
      right_val = right_val * lazy[last];
    }
    return left_val + right_val;
  }

  /**
   * @return Sum of all elements.
   */
  Monoid fold() { return fold(0, size_orig); }

  /**
   * @brief Binary search for the partition point.
   * @param right Right fixed end of the interval, exclusive
   * @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
   * size_t)'
   * @return Left end of the extremal interval satisfying the condition,
   * inclusive.
   */
  template <class Pred> size_t left_partition(size_t right, Pred pred) {
    assert(right <= size_orig);
    repair();
    right += size_ext - 1;
    for (size_t i{height}; i; --i) push(right >> i);
    ++right;
    Monoid mono{};
    for (size_t left{size_ext}, step{}; left != right;
         left >>= 1, right >>= 1, ++step) {
      if ((left & 1) != (right & 1)) {
        const Monoid tmp = data[--right] + mono;
        if (!pass_args(pred, tmp, (right << step) ^ size_ext))
          return left_partition_subtree(right, mono, step, pred);
        mono = tmp;
      }
    }
    return 0;
  }

  /**
   * @brief Binary search for the partition point.
   * @param left Left fixed end of the interval, inclusive
   * @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
   * size_t)'
   * @return Right end of the extremal interval satisfying the condition,
   * exclusive.
   */
  template <class Pred> size_t right_partition(size_t left, Pred pred) {
    assert(left <= size_orig);
    repair();
    left += size_ext;
    for (size_t i{height}; i; --i) push(left >> i);
    Monoid mono{};
    for (size_t right{size_ext << 1}, step{}; left != right;
         left >>= 1, right >>= 1, ++step) {
      if ((left & 1) != (right & 1)) {
        const Monoid tmp = mono + data[left];
        if (!pass_args(pred, tmp, ((left + 1) << step) ^ size_ext))
          return right_partition_subtree(left, mono, step, pred);
        mono = tmp;
        ++left;
      }
    }
    return size_orig;
  }
};

}  // namespace workspace
#line 28 "other/y.cc"

namespace workspace {

void main() {
  // start here!

  struct endo {
    i64 v = 0;
    endo operator*(endo o) { return {v + o.v}; }
  };

  struct mono {
    i64 v = 1e18;
    int r = -1;
    mono operator+(mono o) { return pair(v, r) < pair(o.v, o.r) ? *this : o; }
    mono operator*(endo o) { return {v + o.v, r}; }
  };

  int n;
  cin >> n;

  if (n == 1) {
    int a;
    cin >> a;
    int q;
    cin >> q;
    while (q--) {
      cin >> a;
      cin >> a;
      cout << max(0, a - n + 2) << eol;
    }
    return;
  }

  // init with n-2
  multiset<i64> ms;
  for (auto i : range(n)) {
    ms.emplace(n - 2);
  }
  vector<int> a(n, n - 2);

  lazy_segment_tree<mono, endo> sgt(n - 1);
  for (auto i : range(n - 1)) {
    sgt[i] = {i, i};
  }

  auto ch = [&](int i, int x) -> i64 {
    ms.erase(ms.lower_bound(a[i]));
    ms.emplace(x);
    auto mx = *ms.rbegin();
    sgt.update({x / (n - 1)});
    sgt.update({-(a[i] / (n - 1))});
    sgt.update(1 + a[i] % (n - 1), n - 1, {1});
    sgt.update(1 + x % (n - 1), n - 1, {-1});
    a[i] = x;
    mx -= n - 2;
    chge(mx, i64(0));
    const auto r = mx % (n - 1), q = mx / (n - 1);
    i64 rp = sgt.right_partition(r, [&](auto mo) { return mo.v > q; });
    if (rp < n - 1) return (n - 1) * q + rp;
    rp = sgt.right_partition(0, [&](auto mo) { return mo.v > q; });
    if (rp < n - 1) return (n - 1) * (q + 1) + rp;
    auto f = sgt.fold();
    assert(f.v > q);
    return f.v * (n - 1) + f.r;
  };

  for (auto i : range(n)) {
    int x;
    cin >> x;
    ch(i, x);
  }

  int q;
  cin >> q;
  for (auto _ : range(q)) {
    int i, x;
    cin >> i >> x;
    --i;
    cout << ch(i, x) << "\n";
  }
}

}  // namespace workspace
0