結果
| 問題 | No.1050 Zero (Maximum) | 
| コンテスト | |
| ユーザー | 👑  Kazun | 
| 提出日時 | 2021-02-19 05:02:35 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 196 ms / 2,000 ms | 
| コード長 | 6,914 bytes | 
| コンパイル時間 | 139 ms | 
| コンパイル使用メモリ | 82,132 KB | 
| 実行使用メモリ | 76,380 KB | 
| 最終ジャッジ日時 | 2024-09-15 08:55:47 | 
| 合計ジャッジ時間 | 2,654 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge6 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 15 | 
ソースコード
class Modulo_Matrix():
    #入力
    def __init__(self,M,Mod):
        self.ele=[[x%Mod for x in X] for X in M]
        self.Mod=Mod
        R=len(M)
        if R!=0:
            C=len(M[0])
        else:
            C=0
        self.row=R
        self.col=C
        self.size=(R,C)
    #出力
    def __str__(self):
        T=""
        (r,c)=self.size
        for i in range(r):
            U="["
            for j in range(c):
                U+=str(self.ele[i][j])+" "
            T+=U[:-1]+"]\n"
        return "["+T[:-1]+"]"
    #+,-
    def __pos__(self):
        return self
    def __neg__(self):
        return self.__scale__(-1)
    #加法
    def __add__(self,other):
        A=self
        B=other
        if A.size!=B.size:
            raise Modulo_Matrix_Error("2つの行列のサイズが異なります.({},{})".format(A.size,B.size))
        M=A.ele
        N=B.ele
        L=[0]*self.row
        for i in range(A.row):
            E,F=M[i],N[i]
            L[i]=[(E[j]+F[j])%self.Mod for j in range(self.col)]
        return Modulo_Matrix(L,self.Mod)
    #減法
    def __sub__(self,other):
        return self+(-other)
    #乗法
    def __mul__(self,other):
        A=self
        B=other
        if isinstance(B,Modulo_Matrix):
            R=A.row
            C=B.col
            if A.col!=B.row:
                raise Modulo_Matrix_Error("左側の列と右側の行が一致しません.({},{})".format(A.size,B.size))
            G=A.col
            M=A.ele
            N=B.ele
            E=[[0]*other.col for _ in range(self.row)]
            for i in range(R):
                F=M[i]
                for j in range(C):
                    for k in range(G):
                        E[i][j]=(E[i][j]+F[k]*N[k][j])%self.Mod
            return Modulo_Matrix(E,self.Mod)
        elif isinstance(B,int):
            return A.__scale__(B)
    def __rmul__(self,other):
        if isinstance(other,int):
            return self*other
    def Inverse(self):
        M=self
        if  M.row!=M.col:
            raise Modulo_Matrix_Error("正方行列ではありません.")
        R=M.row
        I=[[1*(i==j) for j in range(R)] for i in range(R)]
        G=M.Column_Union(Modulo_Matrix(I,self.Mod))
        G=G.Row_Reduce()
        A,B=[None]*R,[None]*R
        for i in range(R):
            A[i]=G.ele[i][:R]
            B[i]=G.ele[i][R:]
        if A==I:
            return Modulo_Matrix(B,self.Mod)
        else:
            raise Modulo_Matrix_Error("正則ではありません.")
    #スカラー倍
    def __scale__(self,r):
        M=self.ele
        L=[[(r*M[i][j])%self.Mod for j in range(self.col)] for i in range(self.row)]
        return Modulo_Matrix(L,self.Mod)
    #累乗
    def __pow__(self,n):
        A=self
        if A.row!=A.col:
            raise Modulo_Matrix_Error("正方行列ではありません.")
        if n<0:
            return (A**(-n)).Inverse()
        R=Modulo_Matrix([[1*(i==j) for j in range(A.row)] for i in range(A.row)],self.Mod)
        D=A
        while n>0:
            if n%2==1:
                R*=D
            D*=D
            n=n>>1
        return R
    #等号
    def __eq__(self,other):
        A=self
        B=other
        if A.size!=B.size:
            return False
        for i in range(A.row):
            for j in range(A.col):
                if A.ele[i][j]!=B.ele[i][j]:
                    return False
        return True
    #不等号
    def __neq__(self,other):
        return not(self==other)
    #転置
    def Transpose(self):
        self.col,self.row=self.row,self.col
        self.ele=list(map(list,zip(*self.ele)))
    #行基本変形
    def Row_Reduce(self):
        M=self
        (R,C)=M.size
        T=[]
        for i in range(R):
            U=[]
            for j in range(C):
                U.append(M.ele[i][j])
            T.append(U)
        I=0
        for J in range(C):
            if T[I][J]==0:
                for i in range(I+1,R):
                    if T[i][J]!=0:
                        T[i],T[I]=T[I],T[i]
                        break
            if T[I][J]!=0:
                u=T[I][J]
                u_inv=pow(u,self.Mod-2,self.Mod)
                for j in range(C):
                    T[I][j]*=u_inv
                    T[I][j]%=self.Mod
                for i in range(R):
                    if i!=I:
                        v=T[i][J]
                        for j in range(C):
                            T[i][j]-=v*T[I][j]
                            T[i][j]%=self.Mod
                I+=1
                if I==R:
                    break
        return Modulo_Matrix(T,self.Mod)
    #列基本変形
    def Column_Reduce(self):
        M=self
        (R,C)=M.size
        T=[]
        for i in range(R):
            U=[]
            for j in range(C):
                U.append(M.ele[i][j])
            T.append(U)
        J=0
        for I in range(R):
            if T[I][J]==0:
                for j in range(J+1,C):
                    if T[I][j]!=0:
                        for k in range(R):
                            T[k][j],T[k][J]=T[k][J],T[k][j]
                        break
            if T[I][J]!=0:
                u=T[I][J]
                u_inv=pow(u,self.Mod-2,self.Mod)
                for i in range(R):
                    T[i][J]*=u_inv
                    T[i][J]%=self.Mod
                for j in range(C):
                    if j!=J:
                        v=T[I][j]
                        for i in range(R):
                            T[i][j]-=v*T[i][J]
                            T[i][j]%=self.Mod
                J+=1
                if J==C:
                    break
        return Modulo_Matrix(T,self.Mod)
    #行列の階数
    def Rank(self):
        M=self.Row_Reduce()
        (R,C)=M.size
        T=M.ele
        S=0
        for i in range(R):
            f=False
            for j in range(C):
                if T[i][j]!=0:
                    f=True
                    break
            if f:
                S+=1
            else:
                break
        return S
    #行の結合
    def Row_Union(self,other):
        return Modulo_Matrix(self.ele+other.ele,self.Mod)
    #列の結合
    def Column_Union(self,other):
        E=[]
        for i in range(self.row):
            E.append(self.ele[i]+other.ele[i])
        return Modulo_Matrix(E,self.Mod)
    def __getitem__(self,index):
        assert isinstance(index,tuple) and len(index)==2
        return self.ele[index[0]][index[1]]
    def __setitem__(self,index,val):
        assert isinstance(index,tuple) and len(index)==2
        self.ele[index[0]][index[1]]=val
#================================================
M,K=map(int,input().split())
Mod=10**9+7
X=Modulo_Matrix([[1]*M for _ in range(M)],Mod)
for i in range(M):
    for j in range(M):
        X[(i*j)%M,i]+=1
print(pow(X,K)[0,0])
            
            
            
        