結果
問題 | No.1396 Giri |
ユーザー | 👑 obakyan |
提出日時 | 2021-02-21 16:07:33 |
言語 | Lua (LuaJit 2.1.1696795921) |
結果 |
AC
|
実行時間 | 941 ms / 2,000 ms |
コード長 | 1,660 bytes |
コンパイル時間 | 132 ms |
コンパイル使用メモリ | 6,688 KB |
実行使用メモリ | 11,916 KB |
最終ジャッジ日時 | 2024-09-19 14:11:29 |
合計ジャッジ時間 | 8,679 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 911 ms
11,904 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 930 ms
11,848 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 4 ms
5,376 KB |
testcase_17 | AC | 11 ms
5,376 KB |
testcase_18 | AC | 57 ms
5,376 KB |
testcase_19 | AC | 445 ms
7,296 KB |
testcase_20 | AC | 625 ms
11,296 KB |
testcase_21 | AC | 801 ms
11,832 KB |
testcase_22 | AC | 937 ms
11,904 KB |
testcase_23 | AC | 931 ms
11,876 KB |
testcase_24 | AC | 941 ms
11,776 KB |
testcase_25 | AC | 924 ms
11,916 KB |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs local mod = 998244353 local function bmul(x, y) local x0, y0 = x % 31596, y % 31596 local x1, y1 = mfl(x / 31596), mfl(y / 31596) return (x1 * y1 * 62863 + (x1 * y0 + x0 * y1) * 31596 + x0 * y0) % mod end local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if allnums[i] then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local tmp = {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while primepos <= prime_num and dv <= lim do if x % dv == 0 then local cnt = 1 x = mfl(x / dv) while x % dv == 0 do x = mfl(x / dv) cnt = cnt + 1 end tmp[dv] = cnt lim = mce(msq(x)) end if primepos == prime_num then break end primepos = primepos + 1 dv = primes[primepos] end if x ~= 1 then tmp[x] = 1 end return tmp end local n = io.read("*n") local primes = getprimes(n) local all = {} for i = 2, n do local dvp = getdivisorparts(i, primes) for p, cnt in pairs(dvp) do if not all[p] then all[p] = cnt else all[p] = mma(all[p], cnt) end end end local max_p = 1 local ret = 1 for p, cnt in pairs(all) do max_p = mma(max_p, p) end for p, cnt in pairs(all) do if p ~= max_p then for i = 1, cnt do ret = bmul(ret, p) end end end print(ret)