結果

問題 No.274 The Wall
ユーザー nebocco
提出日時 2021-02-26 15:22:56
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 17 ms / 2,000 ms
コード長 10,391 bytes
コンパイル時間 13,179 ms
コンパイル使用メモリ 382,836 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-02 08:37:32
合計ジャッジ時間 14,097 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

fn main() {
let mut io = IO::new();
input!{ from io,
n: usize, m: usize,
l: [(usize, usize); n],
}
let mut puf = PotentializedUnionFind::new(n);
for i in 0..n {
for j in i+1..n {
if !(l[i].1 < l[j].0 || l[j].1 < l[i].0) {
if puf.unite(i, j, Xor(true)).is_err() {
io.println("NO");
return;
}
}
if !(l[i].1 < m-1-l[j].1 || m-1-l[j].0 < l[i].0) {
if puf.unite(i, j, Xor(false)).is_err() {
io.println("NO");
return;
}
}
}
}
io.println("YES");
}
#[derive(Clone, Copy, PartialEq)]
struct Xor(bool);
impl Associative for Xor {}
impl Add for Xor {
type Output = Self;
fn add(self, rhs: Self) -> Self {
Self(self.0 ^ rhs.0)
}
}
impl Zero for Xor {
fn zero() -> Self { Self(false) }
fn is_zero(&self) -> bool { !self.0 }
}
impl Neg for Xor {
type Output = Self;
fn neg(self) -> Self { self }
}
// ------------ Potentialized UnionFind start ------------
#[derive(Clone, Debug)]
pub struct PotentializedUnionFind<T>{
data: Vec<isize>,
ws: Vec<T>
}
impl<T: Group> PotentializedUnionFind<T> {
pub fn new(len: usize) -> Self {
Self{
data: vec![-1; len],
ws: vec![T::zero(); len]
}
}
pub fn find(&mut self, i: usize) -> usize {
self._climb(i).0
}
pub fn size(&mut self, i: usize) -> usize {
self._climb(i).1
}
pub fn potential(&mut self, i: usize) -> T {
self._climb(i).2
}
/// potential[v] - potential[u] = w
/// keep potential[u] unchanged
pub fn unite(&mut self, u: usize, v: usize, mut w: T) -> Result<(), ()> {
let (u, su, wu) = self._climb(u);
let (v, sv, wv) = self._climb(v);
if u == v {
return if w == -wu + wv { Ok(()) } else { Err(()) };
}
w = -self.ws[u].clone() + wu + w + self.ws[v].clone() + -wv;
if su < sv {
self.data[v] += self.data[u];
self.data[u] = v as isize;
self.ws[v] = self.ws[u].clone() + w.clone();
self.ws[u] = -w.clone();
} else {
self.data[u] += self.data[v];
self.data[v] = u as isize;
self.ws[v] = w.clone();
}
Ok(())
}
pub fn is_same(&mut self, u: usize, v:usize) -> bool {
self.find(u) == self.find(v)
}
/// potential[v] - potential[u]
pub fn diff(&mut self, u: usize, v: usize) -> Option<T> {
let (u, _, wu) = self._climb(u);
let (v, _, wv) = self._climb(v);
if u == v {
Some(-wu + wv)
} else {
None
}
}
pub fn weigh(&mut self, u: usize, w: T) {
let p = self.find(u);
self.ws[p] = self.ws[p].clone() + w;
}
/// _climb(i) -> (root, group size, potential)
fn _climb(&mut self, i: usize) -> (usize, usize, T) {
assert!(i < self.data.len());
let mut v = i;
let mut w = T::zero();
while self.data[v] >= 0 {
w = self.ws[v].clone() + w;
let p = self.data[v] as usize;
if self.data[p] >= 0 {
self.data[v] = self.data[p];
self.ws[v] = self.ws[p].clone() + self.ws[v].clone();
}
v = p;
}
w = self.ws[v].clone() + w;
(v, -self.data[v] as usize, w)
}
}
// ------------ Potentialized UnionFind end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
///
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
///
pub trait Associative: Magma {}
///
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
///
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
///
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
///
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
///
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
///
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
///
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
///
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
///
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String);
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0