結果
問題 | No.1406 Test |
ユーザー |
![]() |
提出日時 | 2021-02-26 21:22:35 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 10,521 bytes |
コンパイル時間 | 1,214 ms |
コンパイル使用メモリ | 113,212 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-02 13:48:39 |
合計ジャッジ時間 | 1,995 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 22 |
ソースコード
#include<iostream>#include<algorithm>#include<string>#include<cmath>#include<vector>#include<map>#include<cstdio>#include<iomanip>#include<set>#include<numeric>#include<queue>#include<deque>#include<utility>#include<stack>#include <random>constexpr int MOD = 1000000007;//constexpr int MOD = 998244353;#pragma region Macrosusing namespace std;#define int long long#define double long doubleconstexpr double PI = 3.14159265358979323846;const int INF = 9223372036854775807;const int dx[8] = { 1, 0, -1, 0, 1, -1, -1, 1 };const int dy[8] = { 0, 1, 0, -1, 1, 1, -1, -1 };#define rep(i,n) for(int i=0;i<n;++i)#define REP(i,n) for(int i=1;i<=n;i++)#define krep(i,k,n) for(int i=(k);i<n+k;i++)#define Krep(i,k,n) for(int i=(k);i<n;i++)#define rrep(i,n) for(int i=n-1;i>=0;i--)#define Rrep(i,n) for(int i=n;i>0;i--)#define LAST(x) x[x.size()-1]#define ALL(x) (x).begin(),(x).end()#define MAX(x) *max_element(ALL(x))#define MIN(x) *min_element(ALL(x)#define RUD(a,b) ((a+b-1)/b)#define sum1_n(n) ((n)*(n+1)/2)#define SUM1n2(n) (n*(2*n+1)*(n+1))/6#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))#define SZ(x) ((int)(x).size())#define PB push_back#define Fi first#define Se secondint factorial(int a) {if (a == 0)return 1;elsereturn a * factorial(a - 1);}int nPr(int n, int r) {int s = n - r + 1;int sum = 1;for (int i = s; i <= n; i++)sum *= i;return sum;}int GCD(int a, int b) {if (a < b)swap(a, b);if (b == 0)return a;if (a % b == 0)return b;return GCD(b, a % b);}int LCM(int a, int b) {return a / GCD(a, b) * b;}int divisor_count(int n) {//約数の数int ans = 0;REP(i, sqrt(n)) {if (n % i == 0)ans += 2;if (n == i * i)ans--;}return ans;}int divisor_sum(int n) {//約数の総和int ans = 0;REP(i, sqrt(n)) {if (n % i == 0)ans += i + n / i;if (n == i * i)ans -= n / i;}return ans;}int CEIL1(int n) {//1桁目切り上げreturn (n + 9) / 10 * 10;}int getdigit(int n) {return log10(n) + 1;}/*int digit(int n, int k) {//nのk桁目rep(i, k - 1)n /= 10;return n % 10;}*/int DIVTIME(int n, int k) {//nをkで何回割れるか的なint div = 0;while (n % k == 0) {div++;n /= k;}return div;}#pragma region base/*int n_decimal(int k, int n) {int ans = 0;for (int i = 0; k > 0; i++) {ans += k % n * intpow(10, i);k /= n;}return ans;}*//*int binary_2to10(string n) {int ans = 0;rep(i, n.size()) {if (n[i] == '1')ans += intpow(2, n.size() - i - 1);}return ans;}*/string base_k(int n, int k) {//n(10)をk進数(string)でstring ans = "";while (n) {ans += to_string(n % k);n /= k;}reverse(ALL(ans));return ans;}#pragma endregionint intabs(int n) {if (n < 0)return -1 * n;elsereturn n;}/*int Kaibun(int n) {int ans = 0;int d = getdigit(n);REP(i, d)ans += digit(n, i) * pow(10, d - i);return ans;}*/double LOG(int a, int b) {return log(b) / log(a);}double DISTANCE(int x1, int y1, int x2, int y2) {return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));}double clock_angle(int h, int m) {h %= 12;double mm = 6.0 * m;double nn = 30.0 * h + 0.5 * m;return std::min(fabs(mm - nn), 360.0 - fabs(nn - mm));}inline bool BETWEEN(int x, int min, int max) {if (min <= x && x <= max)return true;elsereturn false;}inline bool between(int x, int min, int max) {if (min < x && x < max)return true;elsereturn false;}template<class T>inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T>inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}#define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl#pragma endregiontypedef vector<int> vint;typedef vector<vint> vvint;typedef vector<vvint> vvvint;typedef vector<string> vstring;typedef vector<bool> vbool;typedef vector<vbool> vvbool;typedef map<int, int> mapint;typedef pair<int, int> pint;typedef tuple<int, int, int>tint;typedef vector<pint> vpint;typedef vector<vpint> vvpint;typedef vector<tint> vtint;typedef vector<vtint> vvtint;using Graph = vector<vint>;#pragma region MODtemplate<int MOD> struct Fp {long long val;constexpr Fp(long long v = 0) noexcept : val(v% MOD) {if (val < 0) val += MOD;}constexpr int getmod() const { return MOD; }constexpr Fp operator - () const noexcept {return val ? MOD - val : 0;}constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }constexpr Fp& operator += (const Fp& r) noexcept {val += r.val;if (val >= MOD) val -= MOD;return *this;}constexpr Fp& operator -= (const Fp& r) noexcept {val -= r.val;if (val < 0) val += MOD;return *this;}constexpr Fp& operator *= (const Fp& r) noexcept {val = val * r.val % MOD;return *this;}constexpr Fp& operator /= (const Fp& r) noexcept {long long a = r.val, b = MOD, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b, swap(a, b);u -= t * v, swap(u, v);}val = val * u % MOD;if (val < 0) val += MOD;return *this;}constexpr bool operator == (const Fp& r) const noexcept {return this->val == r.val;}constexpr bool operator != (const Fp& r) const noexcept {return this->val != r.val;}friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {is >> x.val;x.val %= MOD;if (x.val < 0) x.val += MOD;return is;}friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {return os << x.val;}friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {if (n == 0) return 1;if (n < 0) return modpow(modinv(r), -n);auto t = modpow(r, n / 2);t = t * t;if (n & 1) t = t * r;return t;}friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {long long a = r.val, b = MOD, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b, swap(a, b);u -= t * v, swap(u, v);}return Fp<MOD>(u);}};using mint = Fp<MOD>;#pragma endregion#pragma region nCrconst int MAXR = 10000000;int fac[MAXR], finv[MAXR], inv[MAXR];void COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAXR; i++) {fac[i] = fac[i - 1] * i % MOD;inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;finv[i] = finv[i - 1] * inv[i] % MOD;}}int nCr(int n, int k) {if (n < k)return 0;if (n < 0 || k < 0)return 0;return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;}mint nCrm(long long N, long long K) {mint res = 1;for (long long n = 0; n < K; ++n) {res *= (N - n);res /= (n + 1);}return res;}int nCr2(int n, int r) {//MODらない奴int ans = 1;REP(i, r) {ans *= n--;ans /= i;}return ans;}#pragma endregionvector<pint> prime_factorize(int N) {vector<pint> res;for (int i = 2; i * i <= N; i++) {if (N % i != 0)continue;int ex = 0;while (N % i == 0) {++ex;N /= i;}res.push_back({ i, ex });}if (N != 1)res.push_back({ N, 1 });return res;}double median(vint a) {int N = a.size();if (N % 2 == 1)return (double)a[N / 2];elsereturn (double)(a[N / 2 - 1] + a[N / 2]) / 2;}typedef vector<mint> vmint;typedef vector<vmint> vvmint;template<typename T> class BIT {private:int n;vector<T> bit;public:// 0_indexed で i 番目の要素に x を加えるvoid add(int i, T x) {i++;while (i < n) {bit[i] += x, i += i & -i;}}// 0_indexed で [0,i] の要素の和(両閉区間!!)T sum(int i) {i++;T s = 0;while (i > 0) {s += bit[i], i -= i & -i;}return s;}BIT() {}//初期値がすべて0の場合BIT(int sz) : n(sz + 1), bit(n, 0) {}BIT(const vector<T>& v) : n((int)v.size() + 1), bit(n, 0) {for (int i = 0; i < n - 1; i++) {add(i, v[i]);}}void print() {for (int i = 0; i < n - 1; i++) {cout << sum(i) - sum(i - 1) << " ";}cout << "\n";}//-1スタートvoid print_sum() {for (int i = 0; i < n; i++) {cout << sum(i - 1) << " ";}cout << "\n";}};// u を昇順にソートするのに必要な交換回数(転倒数) (u は {0,..., n-1} からなる重複を許した長さ n の数列)long long inv_count(const vector<int>& u){int n = (int)u.size();BIT<int> bt(n);long long ans = 0;for (int i = 0; i < n; i++) {ans += i - bt.sum(u[i]);bt.add(u[i], 1);}return ans;}// u を v に変換するのに必要な交換回数(転倒数)// (u, v は {0,..., n-1} からなる重複を許した長さ n の数列. ただし u, v 全体で各数字の個数は一致するものとする)long long inv_count(const vector<int>& u, const vector<int>& v, int j){int n = (int)u.size();vector<vector<int> > p(n);BIT<int> bt(n);for (int i = n - 1; i >= 0; --i) {p[u[(i + j) % n]].push_back((i + j) % n);}long long ans = 0;for (int i = 0; i < n; ++i) {int pos = p[v[(i + j) % n]].back();p[v[(i + j) % n]].pop_back();ans += pos - bt.sum(pos);bt.add(pos, 1);}return ans;}int f(int n, int k) {int ans = 0, cnt = 1;while (n > 0) {ans += (n % 10) * cnt;cnt *= k;n /= 10;}return ans;}int mpow(int x, int n, int M) {int ans = 1;while (n > 0) {if (n & 1)ans = ans * x % M;x = x * x % M;n >>= 1;}return ans;}signed main() {int N;cin >> N;int sum = 0;rep(i, N - 1) {int x;cin >> x;sum += x;}int ans = 0;rep(i, 101)if ((sum + i) % N == 0)ans++;cout << ans;}//bit全探索テンプレ/*rep(bit,1<<N){rep(i,N){if (bit & (1 << i)){}}}*///グラフ受け取り/*int N, M;cin >> N >> M;Graph G(N);rep(i, M) {int a, b;cin >> a >> b;a--,b--;G[a].push_back(b);G[b].push_back(a);}*///素因数分解する時のやつ/*const auto& res = prime_factorize(N);for (auto p : res) {}*///グラフデバッグ/*REP(i, N) {cout << "G[" << i << "]=";rep(j, G[i].size)cout << G[i][j] << " ";cout << endl;}*/// fixed << setprecision(15)<<// << setw(2) << setfill('0')/*/*int NumberofDivsors(int N) {vector<pint> a = Prime_factorize(N);int ans = 1;for (pint p : a)ans *= p.second() + 1;return ans;}*/