結果

問題 No.1406 Test
ユーザー UMRgurashiUMRgurashi
提出日時 2021-02-26 21:22:35
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 10,521 bytes
コンパイル時間 1,214 ms
コンパイル使用メモリ 113,212 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-02 13:48:39
合計ジャッジ時間 1,995 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<algorithm>
#include<string>
#include<cmath>
#include<vector>
#include<map>
#include<cstdio>
#include<iomanip>
#include<set>
#include<numeric>
#include<queue>
#include<deque>
#include<utility>
#include<stack>
#include <random>
constexpr int MOD = 1000000007;
//constexpr int MOD = 998244353;
#pragma region Macros
using namespace std;
#define int long long
#define double long double
constexpr double PI = 3.14159265358979323846;
const int INF = 9223372036854775807;
const int dx[8] = { 1, 0, -1, 0, 1, -1, -1, 1 };
const int dy[8] = { 0, 1, 0, -1, 1, 1, -1, -1 };
#define rep(i,n) for(int i=0;i<n;++i)
#define REP(i,n) for(int i=1;i<=n;i++)
#define krep(i,k,n) for(int i=(k);i<n+k;i++)
#define Krep(i,k,n) for(int i=(k);i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define Rrep(i,n) for(int i=n;i>0;i--)
#define LAST(x) x[x.size()-1]
#define ALL(x) (x).begin(),(x).end()
#define MAX(x) *max_element(ALL(x))
#define MIN(x) *min_element(ALL(x)
#define RUD(a,b) ((a+b-1)/b)
#define sum1_n(n) ((n)*(n+1)/2)
#define SUM1n2(n) (n*(2*n+1)*(n+1))/6
#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))
#define SZ(x) ((int)(x).size())
#define PB push_back
#define Fi first
#define Se second
int factorial(int a) {
if (a == 0)
return 1;
else
return a * factorial(a - 1);
}
int nPr(int n, int r) {
int s = n - r + 1;
int sum = 1;
for (int i = s; i <= n; i++)
sum *= i;
return sum;
}
int GCD(int a, int b) {
if (a < b)
swap(a, b);
if (b == 0)
return a;
if (a % b == 0)
return b;
return GCD(b, a % b);
}
int LCM(int a, int b) {
return a / GCD(a, b) * b;
}
int divisor_count(int n) {
//
int ans = 0;
REP(i, sqrt(n)) {
if (n % i == 0)
ans += 2;
if (n == i * i)
ans--;
}
return ans;
}
int divisor_sum(int n) {
//
int ans = 0;
REP(i, sqrt(n)) {
if (n % i == 0)
ans += i + n / i;
if (n == i * i)
ans -= n / i;
}
return ans;
}
int CEIL1(int n) {
//1
return (n + 9) / 10 * 10;
}
int getdigit(int n) {
return log10(n) + 1;
}
/*
int digit(int n, int k) {
//nk
rep(i, k - 1)
n /= 10;
return n % 10;
}
*/
int DIVTIME(int n, int k) {
//nk
int div = 0;
while (n % k == 0) {
div++;
n /= k;
}
return div;
}
#pragma region base
/*
int n_decimal(int k, int n) {
int ans = 0;
for (int i = 0; k > 0; i++) {
ans += k % n * intpow(10, i);
k /= n;
}
return ans;
}
*/
/*
int binary_2to10(string n) {
int ans = 0;
rep(i, n.size()) {
if (n[i] == '1')
ans += intpow(2, n.size() - i - 1);
}
return ans;
}
*/
string base_k(int n, int k) {
//n(10)k(string)
string ans = "";
while (n) {
ans += to_string(n % k);
n /= k;
}
reverse(ALL(ans));
return ans;
}
#pragma endregion
int intabs(int n) {
if (n < 0)
return -1 * n;
else
return n;
}
/*
int Kaibun(int n) {
int ans = 0;
int d = getdigit(n);
REP(i, d)
ans += digit(n, i) * pow(10, d - i);
return ans;
}
*/
double LOG(int a, int b) {
return log(b) / log(a);
}
double DISTANCE(int x1, int y1, int x2, int y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
double clock_angle(int h, int m) {
h %= 12;
double mm = 6.0 * m;
double nn = 30.0 * h + 0.5 * m;
return std::min(fabs(mm - nn), 360.0 - fabs(nn - mm));
}
inline bool BETWEEN(int x, int min, int max) {
if (min <= x && x <= max)
return true;
else
return false;
}
inline bool between(int x, int min, int max) {
if (min < x && x < max)
return true;
else
return false;
}
template<class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl
#pragma endregion
typedef vector<int> vint;
typedef vector<vint> vvint;
typedef vector<vvint> vvvint;
typedef vector<string> vstring;
typedef vector<bool> vbool;
typedef vector<vbool> vvbool;
typedef map<int, int> mapint;
typedef pair<int, int> pint;
typedef tuple<int, int, int>tint;
typedef vector<pint> vpint;
typedef vector<vpint> vvpint;
typedef vector<tint> vtint;
typedef vector<vtint> vvtint;
using Graph = vector<vint>;
#pragma region MOD
template<int MOD> struct Fp {
long long val;
constexpr Fp(long long v = 0) noexcept : val(v% MOD) {
if (val < 0) val += MOD;
}
constexpr int getmod() const { return MOD; }
constexpr Fp operator - () const noexcept {
return val ? MOD - val : 0;
}
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
return os << x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {
if (n == 0) return 1;
if (n < 0) return modpow(modinv(r), -n);
auto t = modpow(r, n / 2);
t = t * t;
if (n & 1) t = t * r;
return t;
}
friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
return Fp<MOD>(u);
}
};
using mint = Fp<MOD>;
#pragma endregion
#pragma region nCr
const int MAXR = 10000000;
int fac[MAXR], finv[MAXR], inv[MAXR];
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAXR; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
int nCr(int n, int k) {
if (n < k)
return 0;
if (n < 0 || k < 0)
return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
mint nCrm(long long N, long long K) {
mint res = 1;
for (long long n = 0; n < K; ++n) {
res *= (N - n);
res /= (n + 1);
}
return res;
}
int nCr2(int n, int r) {
//MOD
int ans = 1;
REP(i, r) {
ans *= n--;
ans /= i;
}
return ans;
}
#pragma endregion
vector<pint> prime_factorize(int N) {
vector<pint> res;
for (int i = 2; i * i <= N; i++) {
if (N % i != 0)
continue;
int ex = 0;
while (N % i == 0) {
++ex;
N /= i;
}
res.push_back({ i, ex });
}
if (N != 1)
res.push_back({ N, 1 });
return res;
}
double median(vint a) {
int N = a.size();
if (N % 2 == 1)
return (double)a[N / 2];
else
return (double)(a[N / 2 - 1] + a[N / 2]) / 2;
}
typedef vector<mint> vmint;
typedef vector<vmint> vvmint;
template<typename T> class BIT {
private:
int n;
vector<T> bit;
public:
// 0_indexed i x
void add(int i, T x) {
i++;
while (i < n) {
bit[i] += x, i += i & -i;
}
}
// 0_indexed [0,i] ()
T sum(int i) {
i++;
T s = 0;
while (i > 0) {
s += bit[i], i -= i & -i;
}
return s;
}
BIT() {}
//0
BIT(int sz) : n(sz + 1), bit(n, 0) {}
BIT(const vector<T>& v) : n((int)v.size() + 1), bit(n, 0) {
for (int i = 0; i < n - 1; i++) {
add(i, v[i]);
}
}
void print() {
for (int i = 0; i < n - 1; i++) {
cout << sum(i) - sum(i - 1) << " ";
}
cout << "\n";
}
//-1
void print_sum() {
for (int i = 0; i < n; i++) {
cout << sum(i - 1) << " ";
}
cout << "\n";
}
};
// u () (u {0,..., n-1} n )
long long inv_count(const vector<int>& u)
{
int n = (int)u.size();
BIT<int> bt(n);
long long ans = 0;
for (int i = 0; i < n; i++) {
ans += i - bt.sum(u[i]);
bt.add(u[i], 1);
}
return ans;
}
// u v ()
// (u, v {0,..., n-1} n . u, v )
long long inv_count(const vector<int>& u, const vector<int>& v, int j)
{
int n = (int)u.size();
vector<vector<int> > p(n);
BIT<int> bt(n);
for (int i = n - 1; i >= 0; --i) {
p[u[(i + j) % n]].push_back((i + j) % n);
}
long long ans = 0;
for (int i = 0; i < n; ++i) {
int pos = p[v[(i + j) % n]].back();
p[v[(i + j) % n]].pop_back();
ans += pos - bt.sum(pos);
bt.add(pos, 1);
}
return ans;
}
int f(int n, int k) {
int ans = 0, cnt = 1;
while (n > 0) {
ans += (n % 10) * cnt;
cnt *= k;
n /= 10;
}
return ans;
}
int mpow(int x, int n, int M) {
int ans = 1;
while (n > 0) {
if (n & 1)
ans = ans * x % M;
x = x * x % M;
n >>= 1;
}
return ans;
}
signed main() {
int N;
cin >> N;
int sum = 0;
rep(i, N - 1) {
int x;
cin >> x;
sum += x;
}
int ans = 0;
rep(i, 101)
if ((sum + i) % N == 0)ans++;
cout << ans;
}
//bit
/*
rep(bit,1<<N){
rep(i,N){
if (bit & (1 << i)){
}
}
}
*/
//
/*
int N, M;
cin >> N >> M;
Graph G(N);
rep(i, M) {
int a, b;
cin >> a >> b;
a--,b--;
G[a].push_back(b);
G[b].push_back(a);
}
*/
//
/*
const auto& res = prime_factorize(N);
for (auto p : res) {
}
*/
//
/*
REP(i, N) {
cout << "G[" << i << "]=";
rep(j, G[i].size)
cout << G[i][j] << " ";
cout << endl;
}
*/
// fixed << setprecision(15)<<
// << setw(2) << setfill('0')
/*
/*int NumberofDivsors(int N) {
vector<pint> a = Prime_factorize(N);
int ans = 1;
for (pint p : a)
ans *= p.second() + 1;
return ans;
}
*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0