結果

問題 No.1407 Kindness
ユーザー kaikeykaikey
提出日時 2021-02-26 21:31:40
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 25 ms / 2,000 ms
コード長 4,928 bytes
コンパイル時間 2,409 ms
コンパイル使用メモリ 208,196 KB
実行使用メモリ 8,832 KB
最終ジャッジ日時 2024-10-02 14:03:05
合計ジャッジ時間 3,650 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 23 ms
8,064 KB
testcase_13 AC 7 ms
5,248 KB
testcase_14 AC 7 ms
5,248 KB
testcase_15 AC 21 ms
7,680 KB
testcase_16 AC 14 ms
6,016 KB
testcase_17 AC 10 ms
5,248 KB
testcase_18 AC 9 ms
5,248 KB
testcase_19 AC 19 ms
7,296 KB
testcase_20 AC 16 ms
6,656 KB
testcase_21 AC 3 ms
5,248 KB
testcase_22 AC 3 ms
5,248 KB
testcase_23 AC 15 ms
6,400 KB
testcase_24 AC 25 ms
8,704 KB
testcase_25 AC 9 ms
5,248 KB
testcase_26 AC 13 ms
5,760 KB
testcase_27 AC 3 ms
5,248 KB
testcase_28 AC 20 ms
7,552 KB
testcase_29 AC 3 ms
5,248 KB
testcase_30 AC 23 ms
8,064 KB
testcase_31 AC 7 ms
5,248 KB
testcase_32 AC 20 ms
7,296 KB
testcase_33 AC 8 ms
5,248 KB
testcase_34 AC 15 ms
6,400 KB
testcase_35 AC 7 ms
5,248 KB
testcase_36 AC 2 ms
5,248 KB
testcase_37 AC 25 ms
8,832 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <random>
#include <chrono>
using namespace std; typedef unsigned long long _ulong; typedef int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
#define fi first
#define se second
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
	for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
	return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
	for (T& in : v) is >> in;
	return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint ceil(lint a, lint b) { return (a + b - 1) / b; }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.fi - b.fi) * abs(a.fi - b.fi) + abs(a.se - b.se) * abs(a.se - b.se); }
lint m_dist(plint a, plint b) { return abs(a.fi - b.fi) + abs(a.se - b.se); }
bool check_overflow(lint a, lint b, lint limit) { return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e9;
lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
	lint from, to;
	lint cost;
	Edge() {

	}
	Edge(lint u, lint v, lint c) {
		cost = c;
		from = u;
		to = v;
	}
	bool operator<(const Edge& e) const {
		return cost < e.cost;
	}
};
struct WeightedEdge {
	lint to;
	lint cost;
	WeightedEdge(lint v, lint c = 1) {
		to = v;
		cost = c;
	}
	bool operator<(const WeightedEdge& e) const {
		return cost < e.cost;
	}
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<plint, lint> tlint;
typedef pair<plint, plint> qlint;
typedef pair<char, lint> valchar;


template <std::int_fast64_t Modulus>
class modint
{
	using u64 = std::int_fast64_t;

public:
	u64 a;
	constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {}
	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }
	constexpr modint operator+(const modint rhs) const noexcept
	{
		return modint(*this) += rhs;
	}
	constexpr modint operator-(const modint rhs) const noexcept
	{
		return modint(*this) -= rhs;
	}
	constexpr modint operator*(const modint rhs) const noexcept
	{
		return modint(*this) *= rhs;
	}
	constexpr modint operator/(const modint rhs) const noexcept
	{
		return modint(*this) /= rhs;
	}
	constexpr modint& operator+=(const modint rhs) noexcept
	{
		a += rhs.a;
		if (a >= Modulus)
		{
			a -= Modulus;
		}
		return *this;
	}
	constexpr modint& operator-=(const modint rhs) noexcept
	{
		if (a < rhs.a)
		{
			a += Modulus;
		}
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint rhs) noexcept
	{
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept
	{
		u64 exp = Modulus - 2;
		while (exp)
		{
			if (exp % 2)
			{
				*this *= rhs;
			}
			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
};
typedef modint<MOD1000000007> ModInt;

ModInt mod_pow(ModInt x, lint n) {
	ModInt ret = 1;
	while (n > 0) {
		if (n & 1) (ret *= x);
		(x *= x);
		n >>= 1;
	}
	return ret;
}

ModInt func[200000];
void funcinit(int N)
{
	func[0] = 1;
	for (int i = 1; i <= N; i++)
	{
		func[i] = func[i - 1] * i;
	}
}
ModInt comb(ModInt n, ModInt r)
{
	if (n.a <= 0 || n.a < r.a)
	{
		return 1;
	}
	return func[n.a] / (func[r.a] * func[(n - r).a]);
}

int main() {
	string s;
	cin >> s;
	lint N = SZ(s);
	V<V<ModInt>> dp(N + 1, V<ModInt>(2));
	dp[0][0] = 1;
	REP(i, N) {
		lint d = s[i] - '0';
		dp[i + 1][1] += dp[i][1] * 45;
		dp[i + 1][1] += dp[i][0] * d * (d - 1) / 2;
		dp[i + 1][0] += dp[i][0] * d;
	}
	ModInt ans = 0;
	ModInt mul = 1;
	REP(i, N - 1) {
		mul *= 45;
		ans += mul;
	}
	ans += dp[N][0] + dp[N][1];
	cout << ans.a << endk;
}
0