結果
問題 | No.1411 Hundreds of Conditions Sequences |
ユーザー | NyaanNyaan |
提出日時 | 2021-02-26 21:39:44 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 472 ms / 2,000 ms |
コード長 | 33,231 bytes |
コンパイル時間 | 4,437 ms |
コンパイル使用メモリ | 317,244 KB |
実行使用メモリ | 88,896 KB |
最終ジャッジ日時 | 2024-10-02 14:15:09 |
合計ジャッジ時間 | 31,553 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 123 ms
57,984 KB |
testcase_01 | AC | 124 ms
57,984 KB |
testcase_02 | AC | 123 ms
57,960 KB |
testcase_03 | AC | 125 ms
57,940 KB |
testcase_04 | AC | 123 ms
58,112 KB |
testcase_05 | AC | 124 ms
58,004 KB |
testcase_06 | AC | 124 ms
57,988 KB |
testcase_07 | AC | 123 ms
58,020 KB |
testcase_08 | AC | 123 ms
58,072 KB |
testcase_09 | AC | 126 ms
58,040 KB |
testcase_10 | AC | 123 ms
57,984 KB |
testcase_11 | AC | 123 ms
57,984 KB |
testcase_12 | AC | 401 ms
84,104 KB |
testcase_13 | AC | 330 ms
77,288 KB |
testcase_14 | AC | 229 ms
67,888 KB |
testcase_15 | AC | 329 ms
76,940 KB |
testcase_16 | AC | 137 ms
59,196 KB |
testcase_17 | AC | 316 ms
76,320 KB |
testcase_18 | AC | 406 ms
83,888 KB |
testcase_19 | AC | 429 ms
86,416 KB |
testcase_20 | AC | 232 ms
67,968 KB |
testcase_21 | AC | 448 ms
88,260 KB |
testcase_22 | AC | 239 ms
69,124 KB |
testcase_23 | AC | 407 ms
84,480 KB |
testcase_24 | AC | 123 ms
58,000 KB |
testcase_25 | AC | 398 ms
84,096 KB |
testcase_26 | AC | 321 ms
76,444 KB |
testcase_27 | AC | 236 ms
68,284 KB |
testcase_28 | AC | 353 ms
79,600 KB |
testcase_29 | AC | 162 ms
60,556 KB |
testcase_30 | AC | 294 ms
73,856 KB |
testcase_31 | AC | 282 ms
72,704 KB |
testcase_32 | AC | 449 ms
88,536 KB |
testcase_33 | AC | 448 ms
88,488 KB |
testcase_34 | AC | 448 ms
88,676 KB |
testcase_35 | AC | 445 ms
88,604 KB |
testcase_36 | AC | 446 ms
88,468 KB |
testcase_37 | AC | 446 ms
88,704 KB |
testcase_38 | AC | 446 ms
88,488 KB |
testcase_39 | AC | 446 ms
88,700 KB |
testcase_40 | AC | 449 ms
88,484 KB |
testcase_41 | AC | 449 ms
88,528 KB |
testcase_42 | AC | 446 ms
88,544 KB |
testcase_43 | AC | 455 ms
88,660 KB |
testcase_44 | AC | 451 ms
88,540 KB |
testcase_45 | AC | 450 ms
88,576 KB |
testcase_46 | AC | 455 ms
88,448 KB |
testcase_47 | AC | 452 ms
88,576 KB |
testcase_48 | AC | 451 ms
88,524 KB |
testcase_49 | AC | 446 ms
88,480 KB |
testcase_50 | AC | 452 ms
88,576 KB |
testcase_51 | AC | 447 ms
88,604 KB |
testcase_52 | AC | 466 ms
88,736 KB |
testcase_53 | AC | 472 ms
88,704 KB |
testcase_54 | AC | 469 ms
88,896 KB |
testcase_55 | AC | 470 ms
88,756 KB |
testcase_56 | AC | 466 ms
88,832 KB |
testcase_57 | AC | 466 ms
88,832 KB |
testcase_58 | AC | 463 ms
88,828 KB |
testcase_59 | AC | 472 ms
88,772 KB |
testcase_60 | AC | 465 ms
88,700 KB |
testcase_61 | AC | 457 ms
88,832 KB |
testcase_62 | AC | 225 ms
81,824 KB |
testcase_63 | AC | 319 ms
82,600 KB |
コンパイルメッセージ
main.cpp:480:7: warning: 'template<class _Category, class _Tp, class _Distance, class _Pointer, class _Reference> struct std::iterator' is deprecated [-Wdeprecated-declarations] In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:65, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/algorithm:60, from main.cpp:11: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_iterator_base_types.h:127:34: note: declared here 127 | struct _GLIBCXX17_DEPRECATED iterator | ^~~~~~~~ main.cpp:482:7: warning: 'template<class _Category, class _Tp, class _Distance, class _Pointer, class _Reference> struct std::iterator' is deprecated [-Wdeprecated-declarations] /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_iterator_base_types.h:127:34: note: declared here 127 | struct _GLIBCXX17_DEPRECATED iterator | ^~~~~~~~
ソースコード
/** * date : 2021-02-26 21:39:40 */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <csetjmp> #include <csignal> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <exception> #include <forward_list> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <locale> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <ratio> #include <regex> #include <set> #include <sstream> #include <stack> #include <stdexcept> #include <streambuf> #include <string> #include <system_error> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <valarray> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; T &x() { return first; } const T &x() const { return first; } U &y() { return second; } const U &y() const { return second; } P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, size_t N> void mem(T (&a)[N], int c) { memset(a, c, sizeof(T) * N); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<T> reord(const vector<T> &v, const vector<T> &ord) { int N = v.size(); vector<T> ret(N); for (int i = 0; i < N; i++) ret[i] = v[ord[i]]; return ret; }; template <typename T = int> vector<T> mkiota(int N) { vector<T> ret(N); iota(begin(ret), end(ret), 0); return ret; } template <typename T> vector<int> mkinv(vector<T> &v, int max_val = -1) { if (max_val < (int)v.size()) max_val = v.size() - 1; vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } __attribute__((target("bmi"))) inline int lsb(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("bmi"))) inline int ctz(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int msb(const u64 &a) { return 63 - _lzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int clz64(const u64 &a) { return _lzcnt_u64(a); } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { a ^= (gbit(a, i) == b ? 0 : (T(b) << i)); } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template <typename T, class... U, char sep = ' '> void outr(const T &t, const U &... u) { cout << t; outr(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug namespace DebugImpl { template <typename U, typename = void> struct is_specialize : false_type {}; template <typename U> struct is_specialize< U, typename conditional<false, typename U::iterator, void>::type> : true_type {}; template <typename U> struct is_specialize< U, typename conditional<false, decltype(U::first), void>::type> : true_type {}; template <typename U> struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type { }; void dump(const char& t) { cerr << t; } void dump(const string& t) { cerr << t; } template <typename U, enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr> void dump(const U& t) { cerr << t; } template <typename T> void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) { string res; if (t == Nyaan::inf) res = "inf"; if (is_signed<T>::value) if (t == -Nyaan::inf) res = "-inf"; if (sizeof(T) == 8) { if (t == Nyaan::infLL) res = "inf"; if (is_signed<T>::value) if (t == -Nyaan::infLL) res = "-inf"; } if (res.empty()) res = to_string(t); cerr << res; } template <typename T, typename U> void dump(const pair<T, U>&); template <typename T> void dump(const pair<T*, int>&); template <typename T> void dump(const T& t, enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) { cerr << "[ "; for (auto it = t.begin(); it != t.end();) { dump(*it); cerr << (++it == t.end() ? "" : ", "); } cerr << " ]"; } template <typename T, typename U> void dump(const pair<T, U>& t) { cerr << "( "; dump(t.first); cerr << ", "; dump(t.second); cerr << " )"; } template <typename T> void dump(const pair<T*, int>& t) { cerr << "[ "; for (int i = 0; i < t.second; i++) { dump(t.first[i]); cerr << (i == t.second - 1 ? "" : ", "); } cerr << " ]"; } void trace() { cerr << endl; } template <typename Head, typename... Tail> void trace(Head&& head, Tail&&... tail) { cerr << " "; dump(head); if (sizeof...(tail) != 0) cerr << ","; trace(forward<Tail>(tail)...); } } // namespace DebugImpl #ifdef NyaanDebug #define trc(...) \ do { \ cerr << "## " << #__VA_ARGS__ << " = "; \ DebugImpl::trace(__VA_ARGS__); \ } while (0) #else #define trc(...) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define repc(i, a, cond) for (long long i = (a); (cond); i++) #define enm(i, val, vec) \ for (long long i = 0; i < (long long)(vec).size(); i++) \ if (auto& val = vec[i]; false) \ ; \ else #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // namespace HashMapImpl { using u32 = uint32_t; using u64 = uint64_t; template <typename Key, typename Data> struct HashMapBase; template <typename Key, typename Data> struct itrB : iterator<bidirectional_iterator_tag, Data, ptrdiff_t, Data*, Data&> { using base = iterator<bidirectional_iterator_tag, Data, ptrdiff_t, Data*, Data&>; using ptr = typename base::pointer; using ref = typename base::reference; u32 i; HashMapBase<Key, Data>* p; explicit constexpr itrB() : i(0), p(nullptr) {} explicit constexpr itrB(u32 _i, HashMapBase<Key, Data>* _p) : i(_i), p(_p) {} explicit constexpr itrB(u32 _i, const HashMapBase<Key, Data>* _p) : i(_i), p(const_cast<HashMapBase<Key, Data>*>(_p)) {} friend void swap(itrB& l, itrB& r) { swap(l.i, r.i), swap(l.p, r.p); } friend bool operator==(const itrB& l, const itrB& r) { return l.i == r.i; } friend bool operator!=(const itrB& l, const itrB& r) { return l.i != r.i; } const ref operator*() const { return const_cast<const HashMapBase<Key, Data>*>(p)->data[i]; } ref operator*() { return p->data[i]; } ptr operator->() const { return &(p->data[i]); } itrB& operator++() { assert(i != p->cap && "itr::operator++()"); do { i++; if (i == p->cap) break; if (p->flag[i] == true && p->dflag[i] == false) break; } while (true); return (*this); } itrB operator++(int) { itrB it(*this); ++(*this); return it; } itrB& operator--() { do { i--; if (p->flag[i] == true && p->dflag[i] == false) break; assert(i != 0 && "itr::operator--()"); } while (true); return (*this); } itrB operator--(int) { itrB it(*this); --(*this); return it; } }; template <typename Key, typename Data> struct HashMapBase { using u32 = uint32_t; using u64 = uint64_t; using iterator = itrB<Key, Data>; using itr = iterator; protected: template <typename K, enable_if_t<is_same<K, Key>::value, nullptr_t> = nullptr, enable_if_t<is_integral<K>::value, nullptr_t> = nullptr> inline u32 inner_hash(const K& key) const { return u32((u64(key ^ r) * 11995408973635179863ULL) >> shift); } template < typename K, enable_if_t<is_same<K, Key>::value, nullptr_t> = nullptr, enable_if_t<is_integral<decltype(K::first)>::value, nullptr_t> = nullptr, enable_if_t<is_integral<decltype(K::second)>::value, nullptr_t> = nullptr> inline u32 inner_hash(const K& key) const { u64 a = key.first ^ r; u64 b = key.second ^ r; a *= 11995408973635179863ULL; b *= 10150724397891781847ULL; return u32((a + b) >> shift); } template <typename D = Data, enable_if_t<is_same<D, Key>::value, nullptr_t> = nullptr> inline u32 hash(const D& dat) const { return inner_hash(dat); } template < typename D = Data, enable_if_t<is_same<decltype(D::first), Key>::value, nullptr_t> = nullptr> inline u32 hash(const D& dat) const { return inner_hash(dat.first); } template <typename D = Data, enable_if_t<is_same<D, Key>::value, nullptr_t> = nullptr> inline Key dtok(const D& dat) const { return dat; } template < typename D = Data, enable_if_t<is_same<decltype(D::first), Key>::value, nullptr_t> = nullptr> inline Key dtok(const D& dat) const { return dat.first; } void reallocate(u32 ncap) { vector<Data> ndata(ncap); vector<bool> nf(ncap); shift = 64 - __lg(ncap); for (u32 i = 0; i < cap; i++) { if (flag[i] == true && dflag[i] == false) { u32 h = hash(data[i]); while (nf[h]) h = (h + 1) & (ncap - 1); ndata[h] = data[i]; nf[h] = true; } } data.swap(ndata); flag.swap(nf); cap = ncap; dflag.resize(cap); fill(std::begin(dflag), std::end(dflag), false); } inline bool extend_rate(u32 x) const { return x * 2 >= cap; } inline bool shrink_rate(u32 x) const { return HASHMAP_DEFAULT_SIZE < cap && x * 10 <= cap; } inline void extend() { reallocate(cap << 1); } inline void shrink() { reallocate(cap >> 1); } public: u32 cap, s; vector<Data> data; vector<bool> flag, dflag; u32 shift; static u64 r; static constexpr uint32_t HASHMAP_DEFAULT_SIZE = 4; explicit HashMapBase() : cap(HASHMAP_DEFAULT_SIZE), s(0), data(cap), flag(cap), dflag(cap), shift(64 - __lg(cap)) {} itr begin() const { u32 h = 0; while (h != cap) { if (flag[h] == true && dflag[h] == false) break; h++; } return itr(h, this); } itr end() const { return itr(this->cap, this); } friend itr begin(const HashMapBase& h) { return h.begin(); } friend itr end(const HashMapBase& h) { return h.end(); } itr find(const Key& key) const { u32 h = inner_hash(key); while (true) { if (flag[h] == false) return this->end(); if (dtok(data[h]) == key) { if (dflag[h] == true) return this->end(); return itr(h, this); } h = (h + 1) & (cap - 1); } } bool contain(const Key& key) const { return find(key) != this->end(); } itr insert(const Data& d) { u32 h = hash(d); while (true) { if (flag[h] == false) { if (extend_rate(s + 1)) { extend(); h = hash(d); continue; } data[h] = d; flag[h] = true; ++s; return itr(h, this); } if (dtok(data[h]) == dtok(d)) { if (dflag[h] == true) { data[h] = d; dflag[h] = false; ++s; } return itr(h, this); } h = (h + 1) & (cap - 1); } } // tips for speed up : // if return value is unnecessary, make argument_2 false. itr erase(itr it, bool get_next = true) { if (it == this->end()) return this->end(); s--; if (shrink_rate(s)) { Data d = data[it.i]; shrink(); it = find(dtok(d)); } int ni = (it.i + 1) & (cap - 1); if (this->flag[ni]) { this->dflag[it.i] = true; } else { this->flag[it.i] = false; } if (get_next) ++it; return it; } itr erase(const Key& key) { return erase(find(key)); } bool empty() const { return s == 0; } int size() const { return s; } void clear() { fill(std::begin(flag), std::end(flag), false); fill(std::begin(dflag), std::end(dflag), false); s = 0; } void reserve(int n) { if (n <= 0) return; n = 1 << min(23, __lg(n) + 2); if (cap < u32(n)) reallocate(n); } }; template <typename Key, typename Data> uint64_t HashMapBase<Key, Data>::r = chrono::duration_cast<chrono::nanoseconds>( chrono::high_resolution_clock::now().time_since_epoch()) .count(); } // namespace HashMapImpl /** * @brief Hash Map(base) (ハッシュマップ・基底クラス) */ template <typename Key, typename Val> struct HashMap : HashMapImpl::HashMapBase<Key, pair<Key, Val>> { using base = typename HashMapImpl::HashMapBase<Key, pair<Key, Val>>; using HashMapImpl::HashMapBase<Key, pair<Key, Val>>::HashMapBase; using Data = pair<Key, Val>; Val& operator[](const Key& k) { typename base::u32 h = base::inner_hash(k); while (true) { if (base::flag[h] == false) { if (base::extend_rate(base::s + 1)) { base::extend(); h = base::hash(k); continue; } base::data[h].first = k; base::data[h].second = Val(); base::flag[h] = true; ++base::s; return base::data[h].second; } if (base::data[h].first == k) { if (base::dflag[h] == true) base::data[h].second = Val(); return base::data[h].second; } h = (h + 1) & (base::cap - 1); } } typename base::itr emplace(const Key& key, const Val& val) { return base::insert(Data(key, val)); } }; /* * @brief ハッシュマップ(連想配列) * @docs docs/hashmap/hashmap.md **/ template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; namespace inner { using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; template <typename T> T gcd(T a, T b) { while (b) swap(a %= b, b); return a; } template <typename T> T inv(T a, T p) { T b = p, x = 1, y = 0; while (a) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } assert(b == 1); return y < 0 ? y + p : y; } template <typename T, typename U> T modpow(T a, U n, T p) { T ret = 1 % p; for (; n; n >>= 1, a = U(a) * a % p) if (n & 1) ret = U(ret) * a % p; return ret; } } // namespace inner namespace my_rand { // [0, 2^64 - 1) uint64_t rng() { static uint64_t x_ = uint64_t(chrono::duration_cast<chrono::nanoseconds>( chrono::high_resolution_clock::now().time_since_epoch()) .count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } // [l, r) int64_t randint(int64_t l, int64_t r) { assert(l < r); return l + rng() % (r - l); } // choose n numbers from [l, r) without overlapping vector<int64_t> randset(int64_t l, int64_t r, int64_t n) { assert(l <= r && n <= r - l); unordered_set<int64_t> s; for (int64_t i = n; i; --i) { int64_t m = randint(l, r + 1 - i); if (s.find(m) != s.end()) m = r - i; s.insert(m); } vector<int64_t> ret; for (auto& x : s) ret.push_back(x); return ret; } // [0.0, 1.0) double rnd() { union raw_cast { double t; uint64_t u; }; constexpr uint64_t p = uint64_t(1023 - 64) << 52; return rng() * ((raw_cast*)(&p))->t; } template <typename T> void randshf(vector<T>& v) { int n = v.size(); for (int loop = 0; loop < 2; loop++) for (int i = 0; i < n; i++) swap(v[i], v[randint(0, n)]); } } // namespace my_rand using my_rand::randint; using my_rand::randset; using my_rand::randshf; using my_rand::rnd; using my_rand::rng; struct ArbitraryLazyMontgomeryModInt { using mint = ArbitraryLazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static u32 mod; static u32 r; static u32 n2; static u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static void set_mod(u32 m) { assert(m < (1 << 30)); assert((m & 1) == 1); mod = m; n2 = -u64(m) % m; r = get_r(); assert(r * mod == 1); } u32 a; ArbitraryLazyMontgomeryModInt() : a(0) {} ArbitraryLazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = ArbitraryLazyMontgomeryModInt(t); return (is); } mint inverse() const { return pow(mod - 2); } u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u32 get_mod() { return mod; } }; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2; struct montgomery64 { using mint = montgomery64; using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; static u64 n2; static u64 get_r() { u64 ret = mod; for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret; return ret; } static void set_mod(u64 m) { assert(m < (1LL << 62)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } u64 a; montgomery64() : a(0) {} montgomery64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){}; static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } mint &operator+=(const mint &b) { if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (i64(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(u128(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u128 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = montgomery64(t); return (is); } mint inverse() const { return pow(mod - 2); } u64 get() const { u64 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u64 get_mod() { return mod; } }; typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2; namespace fast_factorize { using u64 = uint64_t; template <typename mint> bool miller_rabin(u64 n, vector<u64> as) { if (mint::get_mod() != n) mint::set_mod(n); u64 d = n - 1; while (~d & 1) d >>= 1; mint e{1}, rev{int64_t(n - 1)}; for (u64 a : as) { if (n <= a) break; u64 t = d; mint y = mint(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(u64 n) { if (~n & 1) return n == 2; if (n <= 1) return false; if (n < (1LL << 30)) return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, {2, 7, 61}); else return miller_rabin<montgomery64>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template <typename mint, typename T> T pollard_rho(T n) { if (~n & 1) return 2; if (is_prime(n)) return n; if (mint::get_mod() != n) mint::set_mod(n); mint R, one = 1; auto f = [&](mint x) { return x * x + R; }; auto rnd_ = [&]() { return rng() % (n - 2) + 2; }; while (1) { mint x, y, ys, q = one; R = rnd_(), y = rnd_(); T g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y)); g = inner::gcd<T>(q.get(), n); } } if (g == n) do g = inner::gcd<T>((x - (ys = f(ys))).get(), n); while (g == 1); if (g != n) return g; } exit(1); } vector<u64> inner_factorize(u64 n) { if (n <= 1) return {}; u64 p; if (n <= (1LL << 30)) p = pollard_rho<ArbitraryLazyMontgomeryModInt, uint32_t>(n); else p = pollard_rho<montgomery64, uint64_t>(n); if (p == n) return {p}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector<u64> factorize(u64 n) { auto ret = inner_factorize(n); sort(begin(ret), end(ret)); return ret; } using i64 = int64_t; map<u64, i64> factor_count(u64 n) { map<u64, i64> mp; for (auto &x : factorize(n)) mp[x]++; return mp; } vector<u64> divisors(u64 n) { if (n == 0) return {}; vector<pair<u64, i64>> v; for (auto &p : factor_count(n)) v.push_back(p); vector<u64> ret; auto f = [&](auto rec, int i, u64 x) -> void { if (i == (int)v.size()) { ret.push_back(x); return; } for (int j = v[i].second;; --j) { rec(rec, i + 1, x); if (j == 0) break; x *= v[i].first; } }; f(f, 0, 1); sort(begin(ret), end(ret)); return ret; } } // namespace fast_factorize using fast_factorize::divisors; using fast_factorize::factor_count; using fast_factorize::factorize; using fast_factorize::is_prime; /** * @brief 高速素因数分解(Miller Rabin/Pollard's Rho) * @docs docs/prime/fast-factorize.md */ using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; template <typename T> struct Binomial { vector<T> fac_, finv_, inv_; Binomial(int MAX = 0) : fac_(MAX + 10), finv_(MAX + 10), inv_(MAX + 10) { assert(T::get_mod() != 0); MAX += 9; fac_[0] = finv_[0] = inv_[0] = 1; for (int i = 1; i <= MAX; i++) fac_[i] = fac_[i - 1] * i; finv_[MAX] = fac_[MAX].inverse(); for (int i = MAX - 1; i > 0; i--) finv_[i] = finv_[i + 1] * (i + 1); for (int i = 1; i <= MAX; i++) inv_[i] = finv_[i] * fac_[i - 1]; } void extend() { int n = fac_.size(); T fac = fac_.back() * n; T inv = (-inv_[T::get_mod() % n]) * (T::get_mod() / n); T finv = finv_.back() * inv; fac_.push_back(fac); finv_.push_back(finv); inv_.push_back(inv); } T fac(int i) { if(i < 0) return T(0); while (i >= (int)fac_.size()) extend(); return fac_[i]; } T finv(int i) { if(i < 0) return T(0); while (i >= (int)finv_.size()) extend(); return finv_[i]; } T inv(int i) { if(i < 0) return T(0); while (i >= (int)inv_.size()) extend(); return inv_[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; Binomial<mint> C; using namespace Nyaan; void Nyaan::solve() { ini(N); vl a(N); in(a); V<HashMap<int, int>> fs(N); rep(i, N) { auto fc = factorize(a[i]); each(x, fc) fs[i][int(x)] += 1; } vvi A(1001001); mint all = 1; each(x, a) all *= x; mint lcm = 1; rep(i, N) each2(k, v, fs[i]) A[k].push_back(v); rep(i, sz(A)) { auto& v = A[i]; v.push_back(0); v.push_back(0); sort(all(v)); lcm *= mint(i).pow(v.back()); } rep(i, N) { mint al = all / a[i]; mint lc = lcm; each2(k, v, fs[i]) { if (A[k].back() == v) { int dif = A[k][sz(A[k]) - 1] - A[k][sz(A[k]) - 2]; if (dif) lc *= (mint(k).inverse()).pow(dif); } } out(al - lc); } }