結果
問題 | No.1410 A lot of Bit Operations |
ユーザー | noimi |
提出日時 | 2021-02-26 22:34:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 24,154 bytes |
コンパイル時間 | 4,494 ms |
コンパイル使用メモリ | 272,736 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-02 15:17:21 |
合計ジャッジ時間 | 5,698 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 1 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 1 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 1 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 3 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
testcase_39 | AC | 2 ms
5,248 KB |
testcase_40 | AC | 2 ms
5,248 KB |
testcase_41 | AC | 1 ms
5,248 KB |
testcase_42 | AC | 2 ms
5,248 KB |
testcase_43 | AC | 2 ms
5,248 KB |
testcase_44 | AC | 2 ms
5,248 KB |
testcase_45 | AC | 2 ms
5,248 KB |
ソースコード
#pragma region Macros // #pragma GCC target("avx2") #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #define ll long long #define ld long double #define rep2(i, a, b) for(ll i = a; i <= b; ++i) #define rep(i, n) for(ll i = 0; i < n; ++i) #define rep3(i, a, b) for(ll i = a; i >= b; --i) #define pii pair<int, int> #define pll pair<ll, ll> #define pb push_back #define eb emplace_back #define vi vector<int> #define vll vector<ll> #define vpi vector<pii> #define vpll vector<pll> #define overload2(_1, _2, name, ...) name #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ IN(name) #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ IN(name) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) #define mt make_tuple #define fi first #define se second #define all(c) begin(c), end(c) #define SUM(v) accumulate(all(v), 0LL) #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) using namespace std; constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}}; constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}}; const string YESNO[2] = {"NO", "YES"}; const string YesNo[2] = {"No", "Yes"}; const string yesno[2] = {"no", "yes"}; void YES(bool t = 1) { cout << YESNO[t] << endl; } void Yes(bool t = 1) { cout << YesNo[t] << endl; } void yes(bool t = 1) { cout << yesno[t] << endl; } template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define si(c) (int)(c).size() #define INT(...) \ int __VA_ARGS__; \ IN(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ IN(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ IN(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ IN(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ IN(__VA_ARGS__) int scan() { return getchar(); } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(string &a) { cin >> a; } template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); } template <class T> void scan(vector<T> &); template <class T> void scan(vector<T> &a) { for(auto &i : a) scan(i); } template <class T> void scan(T &a) { cin >> a; } void IN() {} template <class Head, class... Tail> void IN(Head &head, Tail &...tail) { scan(head); IN(tail...); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vi iota(int n) { vi a(n); iota(all(a), 0); return a; } template <typename T> vi iota(vector<T> &a, bool greater = false) { vi res(a.size()); iota(all(res), 0); sort(all(res), [&](int i, int j) { if(greater) return a[i] > a[j]; return a[i] < a[j]; }); return res; } #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) template <class T> T POW(T x, int n) { T res = 1; for(; n; n >>= 1, x *= x) if(n & 1) res *= x; return res; } vector<pll> factor(ll x) { vector<pll> ans; for(ll i = 2; i * i <= x; i++) if(x % i == 0) { ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; } template <class T> vector<T> divisor(T x) { vector<T> ans; for(T i = 1; i * i <= x; i++) if(x % i == 0) { ans.pb(i); if(i * i != x) ans.pb(x / i); } return ans; } template <typename T> void zip(vector<T> &x) { vector<T> y = x; sort(all(y)); for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); } // int allbit(int n) { return (1 << n) - 1; } ll allbit(ll n) { return (1LL << n) - 1; } int popcount(signed t) { return __builtin_popcount(t); } int popcount(ll t) { return __builtin_popcountll(t); } bool ispow2(int i) { return i && (i & -i) == i; } int in() { int x; cin >> x; return x; } ll lin() { unsigned long long x; cin >> x; return x; } template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.fi - y.fi, x.se - y.se); } template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.fi + y.fi, x.se + y.se); } // template <class T> pair<T, T> &operator+=(pair<T, T> x, const pair<T, T> &y) { // x = x + y; // return &x; // } // template <class T> pair<T, T> &operator-=(pair<T, T> x, const pair<T, T> &y) { // x = x - y; // return &x; // } template <class T> ll operator*(const pair<T, T> &x, const pair<T, T> &y) { return (ll)x.fi * y.fi + (ll)x.se * y.se; } template <typename T> struct edge { int from, to; T cost; int id; edge(int to, T cost) : from(-1), to(to), cost(cost) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; using Tree = vector<vector<int>>; using Graph = vector<vector<int>>; template <class T> using Wgraph = vector<vector<edge<T>>>; Graph getG(int n, int m = -1, bool directed = false, int margin = 1) { Tree res(n); if(m == -1) m = n - 1; while(m--) { int a, b; cin >> a >> b; a -= margin, b -= margin; res[a].emplace_back(b); if(!directed) res[b].emplace_back(a); } return move(res); } template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) { Wgraph<T> res(n); if(m == -1) m = n - 1; while(m--) { int a, b; T c; cin >> a >> b >> c; a -= margin, b -= margin; res[a].emplace_back(b, c); if(!directed) res[b].emplace_back(a, c); } return move(res); } #define i128 __int128_t #define ull unsigned long long int #define TEST \ INT(testcases); \ while(testcases--) template <class T> ostream &operator<<(ostream &os, const vector<T> &v) { for(auto it = begin(v); it != end(v); ++it) { if(it == begin(v)) os << *it; else os << " " << *it; } return os; } template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) { os << p.first << " " << p.second; return os; } template <class S, class T> string to_string(pair<S, T> p) { return "(" + to_string(p.first) + "," + to_string(p.second) + ")"; } template <class A> string to_string(A v) { if(v.empty()) return "{}"; string ret = "{"; for(auto &x : v) ret += to_string(x) + ","; ret.back() = '}'; return ret; } string to_string(string s) { return "\"" + s + "\""; } void dump() { cerr << endl; } template <class Head, class... Tail> void dump(Head head, Tail... tail) { cerr << to_string(head) << " "; dump(tail...); } #define endl '\n' #ifdef _LOCAL #undef endl #define debug(x) \ cout << #x << ": "; \ dump(x) #else #define debug(x) #endif template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2; struct Setup_io { Setup_io() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout << fixed << setprecision(15); } } setup_io; #define drop(s) cout << #s << endl, exit(0) #pragma endregion namespace modular { constexpr ll MOD = 1000000007; const int MAXN = 11000000; template <ll Modulus> class modint; #define mint modint<MOD> #define vmint vector<mint> vector<mint> Inv; mint inv(int x); template <ll Modulus> class modint { public: static constexpr int mod() { return Modulus; } ll a; constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {} constexpr ll &value() noexcept { return a; } constexpr const ll &value() const noexcept { return a; } constexpr modint operator-() const noexcept { return modint() - *this; } constexpr modint operator+() const noexcept { return *this; } constexpr modint &operator++() noexcept { if(++a == MOD) a = 0; return *this; } constexpr modint &operator--() noexcept { if(!a) a = MOD; a--; return *this; } constexpr modint operator++(int) { modint res = *this; ++*this; return res; } constexpr modint operator--(int) { mint res = *this; --*this; return res; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if(a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if(a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(const modint rhs) noexcept { a = a * (modular::inv(rhs.a)).a % Modulus; return *this; } constexpr modint pow(long long n) const noexcept { if(n < 0) { n %= Modulus - 1; n = (Modulus - 1) + n; } modint x = *this, r = 1; while(n) { if(n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr modint inv() const noexcept { return pow(Modulus - 2); } constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); } constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); } constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); } constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); } constexpr friend modint operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; } constexpr friend modint operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; } // constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); } }; vmint Fact{1, 1}, Ifact{1, 1}; mint inv(int n) { if(n > MAXN) return (mint(n)).pow(MOD - 2); if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1); if(Inv.size() > n) return Inv[n]; else { for(int i = Inv.size(); i <= n; ++i) { auto [y, x] = div(int(MOD), i); Inv.emplace_back(Inv[x] * (-y)); } return Inv[n]; } } mint fact(int n) { if(Fact.size() > n) return Fact[n]; else for(int i = Fact.size(); i <= n; ++i) Fact.emplace_back(Fact[i - 1] * i); return Fact[n]; } mint ifact(int n) { if(Ifact.size() > n) return Ifact[n]; else for(int i = Ifact.size(); i <= n; ++i) Ifact.emplace_back(Ifact[i - 1] * inv(i)); return Ifact[n]; } mint modpow(ll a, ll n) { return mint(a).pow(n); } mint inv(mint a) { return inv(a.a); } mint ifact(mint a) { return ifact(a.a); } mint fact(mint a) { return fact(a.a); } mint modpow(mint a, ll n) { return modpow(a.a, n); } mint C(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; if(a > MAXN) { mint res = 1; rep(i, b) res *= a - i, res /= i + 1; return res; } return fact(a) * ifact(b) * ifact(a - b); } mint P(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; if(a > MAXN) { mint res = 1; rep(i, b) res *= a - i; return res; } return fact(a) * ifact(a - b); } ostream &operator<<(ostream &os, mint a) { os << a.a; return os; } istream &operator>>(istream &is, mint &a) { ll x; is >> x; a = x; return is; } struct modinfo { int mod, root; }; constexpr modinfo base0{1045430273, 3}; constexpr modinfo base1{1051721729, 6}; constexpr modinfo base2{1053818881, 7}; using mint0 = modint<base0.mod>; using mint1 = modint<base1.mod>; using mint2 = modint<base2.mod>; using Poly = vmint; template <int mod> void FMT(vector<modint<mod>> &f, bool inv = false) { using V = vector<modint<mod>>; static V g(30), ig(30); if(g.front().a == 0) { modint<mod> root = 2; while((root.pow((mod - 1) / 2)).a == 1) root += 1; rep(i, 30) g[i] = -(root.pow((mod - 1) >> (i + 2))), ig[i] = g[i].inv(); } int n = size(f); if(!inv) { for(int m = n; m >>= 1;) { modint<mod> w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = f[i], y = f[j] * w; if(x.a >= mod) x.a -= mod; f[i].a = x.a + y.a, f[j].a = x.a + (mod - y.a); } w *= g[__builtin_ctz(++k)]; } } } else { for(int m = 1; m < n; m *= 2) { modint<mod> w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = f[i], y = f[j]; f[i] = x + y, f[j].a = x.a + (mod - y.a), f[j] *= w; } w *= ig[__builtin_ctz(++k)]; } } } modint<mod> c; if(inv) c = modint<mod>(n).inv(); else c = 1; for(auto &&e : f) e *= c; } Poly operator-(Poly f) { for(auto &&e : f) e = -e; return f; } Poly &operator+=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] += r[i]; return l; } Poly operator+(Poly l, const Poly &r) { return l += r; } Poly &operator-=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] -= r[i]; return l; } Poly operator-(Poly l, const Poly &r) { return l -= r; } Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; } Poly operator<<(Poly f, size_t n) { return f <<= n; } Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; } Poly operator>>(Poly f, size_t n) { return f >>= n; } constexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617; using M0 = modint<mod0>; using M1 = modint<mod1>; using M2 = modint<mod2>; template <int mod> void mul(vector<modint<mod>> &l, vector<modint<mod>> &r) { int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1); l.resize(sz), FMT<mod>(l); r.resize(sz), FMT<mod>(r); rep(i, sz) l[i] *= r[i]; FMT<mod>(l, true); l.resize(n + m - 1); } Poly operator*(const Poly &l, const Poly &r) { if(l.empty() or r.empty()) return Poly(); int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1); vector<M0> l0(n), r0(m); vector<M1> l1(n), r1(m); vector<M2> l2(n), r2(m); rep(i, n) l0[i] = l[i].a, l1[i] = l[i].a, l2[i] = l[i].a; rep(i, m) r0[i] = r[i].a, r1[i] = r[i].a, r2[i] = r[i].a; mul<mod0>(l0, r0), mul<mod1>(l1, r1), mul<mod2>(l2, r2); Poly res(n + m - 1); // garner static constexpr M1 inv0 = 613999507; static constexpr M2 inv1 = 1147332803, inv0m1 = 45381342; static constexpr mint m0 = mod0, m0m1 = m0 * mod1; rep(i, n + m - 1) { int y0 = l0[i].a; int y1 = (inv0 * (l1[i] - y0)).a; int y2 = (inv0m1 * (l2[i] - y0) - inv1 * y1).a; res[i] = m0 * y1 + m0m1 * y2 + y0; } return res; } Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; } Poly integ(const Poly &f) { Poly res(f.size() + 1); for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i; return res; } struct Prd { deque<Poly> deq; Prd() = default; void emplace(const Poly &f) { deq.emplace_back(f); } Poly calc() { if(deq.empty()) return {1}; sort(all(deq), [&](const Poly &f, const Poly &g) { return si(f) < si(g); }); while(deq.size() > 1) { deq.emplace_back(deq[0] * deq[1]); for(int i = 0; i < 2; ++i) deq.pop_front(); } return deq.front(); } }; Poly prd(vector<Poly> &v) { Prd p; for(auto &e : v) p.emplace(e); return p.calc(); } // Poly deriv(const Poly &f) { // if(f.size() == 0) return Poly(); // Poly res(f.size() - 1); // rep(i, res.size()) res[i] = f[i + 1] * (i + 1); // return res; // } ostream &operator<<(ostream &os, const Poly &a) { for(auto e : a) cout << e.a << " "; return os; } } // namespace modular using namespace modular; template <class T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)){}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T> &operator[](int k) const { return (A.at(k)); } inline vector<T> &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; int main() { LL(n); STR(s); mint ans; rep(b, 8) { if(s[b] == 'o') { if(n == 0) { ans += 1; continue; } ans += modpow(2, n * 2) * (modpow(2, n) - 1); ans += modpow(2, n * 2) * 2; int c = popcount(b); Matrix<mint> mat(4, 1); mat[0][0] = 1; Matrix<mint> s(4, 4); s[1][0] = c; s[2][0] = 4 - c; s[3][1] = 4 - c; s[1][1] = 4; s[3][2] = c; s[2][2] = 4; s[3][3] = 8; s ^= n; mat = s * mat; ans -= 2 * mat[3][0]; ans -= mat[1][0]; ans -= mat[2][0]; } } cout << ans << endl; }