結果

問題 No.1407 Kindness
ユーザー carrot46carrot46
提出日時 2021-02-26 23:03:44
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4 ms / 2,000 ms
コード長 4,345 bytes
コンパイル時間 1,772 ms
コンパイル使用メモリ 171,328 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-02 15:51:55
合計ジャッジ時間 2,862 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
//#include <chrono>
//#pragma GCC optimize("Ofast")
using namespace std;
#define reps(i,s,n) for(int i = s; i < n; i++)
#define rep(i,n) reps(i,0,n)
#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)
#define Rrep(i,n) Rreps(i,n,0)
#define ALL(a) a.begin(), a.end()
using ll = long long;
using vec = vector<ll>;
using mat = vector<vec>;
ll N,M,H,W,Q,K,A,B;
string S;
using P = pair<ll, ll>;
const ll INF = (1LL<<60);
template<class T> bool chmin(T &a, const T b){
if(a > b) {a = b; return true;}
else return false;
}
template<class T> bool chmax(T &a, const T b){
if(a < b) {a = b; return true;}
else return false;
}
template<class T> void my_printv(std::vector<T> v,bool endline = true){
if(!v.empty()){
for(std::size_t i{}; i<v.size()-1; ++i) std::cout<<v[i]<<" ";
std::cout<<v.back();
}
if(endline) std::cout<<std::endl;
}
template <unsigned long long mod > class modint{
public:
ll x;
constexpr modint(){x = 0;}
constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}
constexpr modint set_raw(ll _x){
//_x in [0, mod)
x = _x;
return *this;
}
constexpr modint operator-(){
return x == 0 ? 0 : mod - x;
}
constexpr modint& operator+=(const modint& a){
if((x += a.x) >= mod) x -= mod;
return *this;
}
constexpr modint operator+(const modint& a) const{
return modint(*this) += a;
}
constexpr modint& operator-=(const modint& a){
if((x -= a.x) < 0) x += mod;
return *this;
}
constexpr modint operator-(const modint& a) const{
return modint(*this) -= a;
}
constexpr modint& operator*=(const modint& a){
(x *= a.x)%=mod;
return *this;
}
constexpr modint operator*(const modint& a) const{
return modint(*this) *= a;
}
constexpr modint pow(unsigned long long pw) const{
modint res(1), comp(*this);
while(pw){
if(pw&1) res *= comp;
comp *= comp;
pw >>= 1;
}
return res;
}
//mod
constexpr modint inv() const{
if(x == 2) return (mod + 1) >> 1;
return modint(*this).pow(mod - 2);
}
constexpr modint& operator/=(const modint &a){
(x *= a.inv().x)%=mod;
return *this;
}
constexpr modint operator/(const modint &a) const{
return modint(*this) /= a;
}
constexpr bool sqrt(bool find_mini = false) {
if(x == 0) return true;
modint jge = this->pow((mod - 1)>>1);
if(jge.x + 1 == mod) return false;
if((mod&3) == 3){
*this = this->pow((mod + 1)>>2);
}else{
int m = 0;
modint c, t;
if(mod == 998244353){
m = 23; c = 15311432; t = this->pow(119);
*this = this->pow(60);
}else{
ll q = mod - 1;
modint z = 2;
while(!(q&1)){q>>=1; ++m;}
while(z.pow((mod-1)>>1).x == 1) z += 1;
c = z.pow(q); t = this->pow(q);
*this = this->pow((q+1)>>1);
}
while(t.x != 1){
modint cpy_t = t;
int pw = m;
while(cpy_t.x != 1){--pw; cpy_t *= cpy_t;}
rep(i, pw-1) c *= c;
(*this) *= c;
c *= c;
t *= c;
m -= pw;
}
}
if(find_mini) this->x = min(this->x, (ll)mod - this->x);
return true;
}
};
#define mod2 1000000007
using mint = modint<mod2>;
ostream& operator<<(ostream& os, const mint& a){
os << a.x;
return os;
}
using vm = vector<mint>;
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
cin>>S;
N = S.size();
vm fpw(N), sum(10);
fpw[0] = 1;
reps(i, 1, N) fpw[i] = fpw[i-1] * 45;
sum[0] = 0;
reps(i, 1, 10) sum[i] = sum[i-1] + i;
mint res = accumulate(fpw.begin() + 1, fpw.end(), mint(0)), now(1);
rep(i, N){
if(S[i] == '0') break;
res += now * sum[S[i] - '1'] * fpw[N - 1 - i];
now *= (S[i] - '0');
}
if(*min_element(ALL(S)) != '0') res += now;
cout<<res<<endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0