結果

問題 No.386 貪欲な領主
ユーザー outlineoutline
提出日時 2021-02-27 20:32:34
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 7,534 bytes
コンパイル時間 1,580 ms
コンパイル使用メモリ 146,172 KB
最終ジャッジ日時 2025-01-19 08:05:25
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 14 WA * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <queue>
#include <string>
#include <map>
#include <set>
#include <stack>
#include <tuple>
#include <deque>
#include <array>
#include <numeric>
#include <bitset>
#include <iomanip>
#include <cassert>
#include <chrono>
#include <random>
#include <limits>
#include <iterator>
#include <functional>
#include <sstream>
#include <fstream>
#include <complex>
#include <cstring>
#include <unordered_map>
#include <unordered_set>
using namespace std;
using ll = long long;
constexpr int INF = 1001001001;
constexpr int mod = 1000000007;
// constexpr int mod = 998244353;
template<class T>
inline bool chmax(T& x, T y){
if(x < y){
x = y;
return true;
}
return false;
}
template<class T>
inline bool chmin(T& x, T y){
if(x > y){
x = y;
return true;
}
return false;
}
constexpr int MAXV = 100005;
vector<vector<int>> g; // ()
int64_t weight[MAXV]; //
vector<int> vs; // DFS
vector<int64_t> dat; // dat[i] := vs[i] (,)->(+.-)
vector<int> sign; // sign[i] := dat[i]
int in[MAXV]; // in[v] := v vs
int out[MAXV]; // out[v] :=
int depth[MAXV]; //
void dfs(int from = 0, int par = -1, int d = 0){
//
in[from] = vs.size();
vs.emplace_back(from);
dat.emplace_back(weight[from]);
sign.emplace_back(1);
depth[from] = d;
for(int to : g[from]){
if(to != par) dfs(to, from, d + 1);
}
//
out[from] = vs.size();
vs.emplace_back(from);
dat.emplace_back(-weight[from]);
sign.emplace_back(-1);
}
template<typename Monoid>
struct SegmentTree{
using F = function<Monoid(Monoid, Monoid)>;
int sz;
vector<Monoid> seg;
const F f;
const Monoid M1;
SegmentTree(const F f, const Monoid& M1) : f(f), M1(M1) {}
SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) {
sz = 1;
while(sz < n) sz <<= 1;
seg.assign(2 * sz, M1);
}
void resize(int n){
sz = 1;
while(sz < n) sz <<= 1;
seg.assign(2 * sz, M1);
}
void set(int k, const Monoid &x){
seg[k + sz] = x;
}
void build(){
for(int k = sz - 1; k > 0; --k){
seg[k] = f(seg[k << 1], seg[k << 1 | 1]);
}
}
void update(int k, const Monoid &x){
k += sz;
seg[k] = x;
while(k >>= 1){
seg[k] = f(seg[k << 1], seg[k << 1 | 1]);
}
}
Monoid query(int a, int b){
Monoid L = M1, R = M1;
for(a += sz, b += sz; a < b; a >>= 1, b >>= 1){
if(a & 1) L = f(L, seg[a++]);
if(b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
Monoid operator[](const int &k) const{
return seg[k + sz];
}
// (type = true) : find_last
// (type = false) : find_first
template<typename C>
int find_subtree(int a, const C &check, Monoid &M, bool type){
while(a < sz){
Monoid nxt = type ? f(seg[a << 1 | type], M) : f(M, seg[a << 1 | type]);
if(check(nxt)) a = a << 1 | type;
else M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template<typename C>
int find_first(int a, const C &check){
Monoid L = M1;
if(a <= 0){
if(check(f(L, seg[1]))) return find_subtree(1, check, L, false);
return -1;
}
int b = sz;
for(a += sz, b += sz; a < b; a >>= 1, b >>= 1){
if(a & 1){
Monoid nxt = f(L, seg[a]);
if(check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template<typename C>
int find_last(int b, const C &check){
Monoid R = M1;
if(b >= sz){
if(check(f(seg[1], R))) return find_subtree(1, check, R, true);
return -1;
}
int a = sz;
for(b += sz; a < b; a >>= 1, b >>= 1){
if(b & 1){
Monoid nxt = f(seg[--b], R);
if(check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
struct LCA{
using G = vector<vector<int>>;
const int ub_log;
vector<int> depth;
const G &g;
vector<vector<int>> table;
LCA(const G &g) : g(g), depth(g.size()), ub_log(32 - __builtin_clz(g.size())){
table.assign(ub_log, vector<int>(g.size(), -1));
}
// dfs
void dfs(int from, int par = -1, int dep = 0){
table[0][from] = par;
depth[from] = dep;
for(auto &to : g[from]){
if(to != par) dfs(to, from, dep + 1);
}
}
void build(int root = 0){
dfs(root);
for(int k = 0; k + 1 < ub_log; ++k){
for(int i = 0; i < table[k].size(); ++i){
if(table[k][i] == -1) table[k + 1][i] = -1;
// i 2^(k+1)
// = ( i 2^k ) 2^k
else table[k + 1][i] = table[k][table[k][i]];
}
}
}
// u v LCA
int query(int u, int v){
if(depth[u] > depth[v]) swap(u, v);
// u v depth
v = get(v, depth[v] - depth[u]);
if(u == v) return u;
for(int i = ub_log - 1; i >= 0; --i){
// 2^i 辿
if(table[i][u] != table[i][v]){
// LCA (u, v)
u = table[i][u];
v = table[i][v];
}
}
return table[0][u];
}
// v x
int get(int v, int x){
if(x <= 0) return v;
for(int i = ub_log - 1; i >= 0; --i){
if(x >> i & 1) v = table[i][v];
}
return v;
}
int length(int u, int v){
int lca = query(u, v);
return depth[u] + depth[v] - depth[lca] * 2;
}
void print(){
for(int k = 0; k + 1 < ub_log; ++k){
for(int i = 0; i < table[k].size(); ++i){
cerr << table[k][i] << " ";
}
cerr << "\n";
}
}
};
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int N;
cin >> N;
g.resize(N);
for(int i = 1; i < N; ++i){
int A, B;
cin >> A >> B;
g[A].emplace_back(B);
g[B].emplace_back(A);
}
for(int i = 0; i < N; ++i) cin >> weight[i];
dfs();
int D = dat.size();
auto op = [](int a, int b){return a + b;};
SegmentTree<int> seg(D, op, 0);
for(int i = 0; i < D; ++i) seg.set(i, dat[i]);
seg.build();
LCA lca_table(g);
lca_table.build();
int M;
cin >> M;
int ans = 0;
for(int i = 0; i < M; ++i){
int A, B, C;
cin >> A >> B >> C;
if(in[A] > in[B]) swap(A, B);
int lca = lca_table.query(A, B);
ans += C * (seg.query(in[lca], in[A] + 1) + seg.query(in[lca], in[B] + 1) - dat[in[lca]]);
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0