結果

問題 No.1413 Dynamic Sushi
ユーザー heno239heno239
提出日時 2021-02-28 21:31:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 4,440 bytes
コンパイル時間 1,870 ms
コンパイル使用メモリ 143,332 KB
実行使用メモリ 20,864 KB
最終ジャッジ日時 2024-10-02 22:09:13
合計ジャッジ時間 22,133 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
20,300 KB
testcase_01 AC 895 ms
20,676 KB
testcase_02 AC 10 ms
20,096 KB
testcase_03 AC 10 ms
20,224 KB
testcase_04 AC 828 ms
20,644 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 961 ms
20,676 KB
testcase_08 WA -
testcase_09 AC 988 ms
20,608 KB
testcase_10 WA -
testcase_11 AC 958 ms
20,608 KB
testcase_12 WA -
testcase_13 WA -
testcase_14 AC 992 ms
20,608 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 AC 983 ms
20,864 KB
testcase_18 WA -
testcase_19 AC 967 ms
20,480 KB
testcase_20 AC 423 ms
20,424 KB
testcase_21 WA -
testcase_22 WA -
testcase_23 AC 975 ms
20,480 KB
testcase_24 AC 974 ms
20,608 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
//#pragma GCC target ("sse4")

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 998244353;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);

ll mod_pow(ll x, ll n, ll m = mod) {
	if (n < 0) {
		ll res = mod_pow(x, -n, m);
		return mod_pow(res, m - 2, m);
	}
	if (abs(x) >= m)x %= m;
	if (x < 0)x += m;
	ll res = 1;
	while (n) {
		if (n & 1)res = res * x % m;
		x = x * x % m; n >>= 1;
	}
	return res;
}
struct modint {
	ll n;
	modint() :n(0) { ; }
	modint(ll m) :n(m) {
		if (n >= mod)n %= mod;
		else if (n < 0)n = (n % mod + mod) % mod;
	}
	operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
	if (n == 0)return modint(1);
	modint res = (a * a) ^ (n / 2);
	if (n % 2)res = res * a;
	return res;
}

ll inv(ll a, ll p) {
	return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
	fact[0] = modint(1);
	for (int i = 0; i < max_n - 1; i++) {
		fact[i + 1] = fact[i] * modint(i + 1);
	}
	factinv[max_n - 1] = modint(1) / fact[max_n - 1];
	for (int i = max_n - 2; i >= 0; i--) {
		factinv[i] = factinv[i + 1] * modint(i + 1);
	}
}
modint comb(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[a - b];
}

ld dp[1 << 12][12];
void solve() {
	int n;ld w; cin >> n >> w;
	vector<ld> x(n), y(n), r(n), v(n), a(n);
	rep(i, n) {
		cin >> x[i] >> y[i] >> r[i] >> v[i] >> a[i];
	}
	auto calc = [&](ld cx, ld cy, ld t,int id)->ld {
		ld dx = abs(cx - x[id]);
		ld dy = abs(cy - y[id]);
		ld dist = sqrt(dx * dx + dy * dy);
		ld le = (dist - r[id]) / w; if (le < 0)le = 0;
		ld ri = (dist + r[id]) / w;
		rep(aa, 50) {
			ld mid = (le + ri) / 2;
			ld nx = x[id] + r[id] * cos((v[id] * (t + mid) + a[id]) * pi / 180.0);
			ld ny = y[id] + r[id] * sin((v[id] * (t + mid) + a[id]) * pi / 180.0);
			ld dx = abs(nx - cx);
			ld dy = abs(ny - cy);
			ld dist = sqrt(dx * dx + dy * dy);
			if (dist <= w * mid) {
				ri = mid;
			}
			else {
				le = mid;
			}
		}
		return le;
	};
	rep(i, (1 << n))rep(j, n)dp[i][j] = INF;
	rep(i, n)dp[(1 << i)][i] = calc(0, 0, 0, i);
	for (int i = 1; i < (1 << n); i++) {
		rep(j, n) {
			if (i & (1 << j)) {
				ld t = dp[i][j];
				ld cx = x[j] + r[j] * cos((v[j] * t + a[j]) * pi / 180.0);
				ld cy = y[j] + r[j] * sin((v[j] * t + a[j]) * pi / 180.0);
				rep(k, n) {
					if (k & (1 << i))continue;
					ld cost = calc(cx, cy, t, k);
					int ni = i ^ (1 << k);
					dp[ni][k] = min(dp[ni][k], t + cost);
				}
			}
		}
	}
	ld ans = INF;
	rep(i, n)ans = min(ans, dp[(1 << n) - 1][i]);
	cout << ans << "\n";
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout << fixed << setprecision(10);
	//init_f();
	//init();
	//expr();
	//int t; cin >> t; rep(i,t)
	solve();
	return 0;
}
0