結果
問題 |
No.957 植林
|
ユーザー |
|
提出日時 | 2021-02-28 21:59:17 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,409 bytes |
コンパイル時間 | 1,676 ms |
コンパイル使用メモリ | 146,152 KB |
最終ジャッジ日時 | 2025-01-19 08:39:04 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 22 TLE * 23 |
ソースコード
#include <iostream> #include <vector> #include <algorithm> #include <cmath> #include <queue> #include <string> #include <map> #include <set> #include <stack> #include <tuple> #include <deque> #include <array> #include <numeric> #include <bitset> #include <iomanip> #include <cassert> #include <chrono> #include <random> #include <limits> #include <iterator> #include <functional> #include <sstream> #include <fstream> #include <complex> #include <cstring> #include <unordered_map> #include <unordered_set> using namespace std; using ll = long long; constexpr int INF = 1001001001; constexpr int mod = 1000000007; // constexpr int mod = 998244353; template<class T> inline bool chmax(T& x, T y){ if(x < y){ x = y; return true; } return false; } template<class T> inline bool chmin(T& x, T y){ if(x > y){ x = y; return true; } return false; } /** * @brief Dinic-Capacity-Scaling(最大流) * @docs docs/dinic-capacity-scaling.md */ template< typename flow_t > struct DinicCapacityScaling { static_assert(is_integral< flow_t >::value, "template parameter flow_t must be integral type"); const flow_t INF; struct edge { int to; flow_t cap; int rev; bool isrev; int idx; }; vector< vector< edge > > graph; vector< int > min_cost, iter; flow_t max_cap; explicit DinicCapacityScaling(int V) : INF(numeric_limits< flow_t >::max()), graph(V), max_cap(0) {} void add_edge(int from, int to, flow_t cap, int idx = -1) { max_cap = max(max_cap, cap); graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx}); graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx}); } bool build_augment_path(int s, int t, const flow_t &base) { min_cost.assign(graph.size(), -1); queue< int > que; min_cost[s] = 0; que.push(s); while(!que.empty() && min_cost[t] == -1) { int p = que.front(); que.pop(); for(auto &e : graph[p]) { if(e.cap >= base && min_cost[e.to] == -1) { min_cost[e.to] = min_cost[p] + 1; que.push(e.to); } } } return min_cost[t] != -1; } flow_t find_augment_path(int idx, const int t, flow_t base, flow_t flow) { if(idx == t) return flow; flow_t sum = 0; for(int &i = iter[idx]; i < graph[idx].size(); i++) { edge &e = graph[idx][i]; if(e.cap >= base && min_cost[idx] < min_cost[e.to]) { flow_t d = find_augment_path(e.to, t, base, min(flow - sum, e.cap)); if(d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; sum += d; if(flow - sum < base) break; } } } return sum; } flow_t max_flow(int s, int t) { if(max_cap == flow_t(0)) return flow_t(0); flow_t flow = 0; for(int i = 63 - __builtin_clzll(max_cap); i >= 0; i--) { flow_t now = flow_t(1) << i; while(build_augment_path(s, t, now)) { iter.assign(graph.size(), 0); flow += find_augment_path(s, t, now, INF); } } return flow; } void output() { for(int i = 0; i < graph.size(); i++) { for(auto &e : graph[i]) { if(e.isrev) continue; auto &rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl; } } } }; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int H, W; cin >> H >> W; vector<vector<ll>> G(H, vector<ll>(W)); int s = H * W + H + W, t = s + 1, V = s + 2; DinicCapacityScaling<ll> g(V); ll ans = 0; for(int i = 0; i < H; ++i){ for(int j = 0; j < W; ++j){ cin >> G[i][j]; int v = i * W + j; g.add_edge(s, v, 0); g.add_edge(v, t, G[i][j]); int w = H * W + i, x = H * W + H + j; g.add_edge(w, v, INF); g.add_edge(x, v, INF); } } vector<ll> R(H), C(W); for(int i = 0; i < H; ++i){ cin >> R[i]; ans += R[i]; int v = H * W + i; g.add_edge(s, v, R[i]); g.add_edge(v, t, 0); } for(int i = 0; i < W; ++i){ cin >> C[i]; ans += C[i]; int v = H * W + H + i; g.add_edge(s, v, C[i]); g.add_edge(v, t, 0); } ans -= g.max_flow(s, t); cout << ans << endl; return 0; }