結果
| 問題 | No.957 植林 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-02-28 21:59:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,409 bytes |
| 記録 | |
| コンパイル時間 | 1,676 ms |
| コンパイル使用メモリ | 146,152 KB |
| 最終ジャッジ日時 | 2025-01-19 08:39:04 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 TLE * 23 |
ソースコード
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <queue>
#include <string>
#include <map>
#include <set>
#include <stack>
#include <tuple>
#include <deque>
#include <array>
#include <numeric>
#include <bitset>
#include <iomanip>
#include <cassert>
#include <chrono>
#include <random>
#include <limits>
#include <iterator>
#include <functional>
#include <sstream>
#include <fstream>
#include <complex>
#include <cstring>
#include <unordered_map>
#include <unordered_set>
using namespace std;
using ll = long long;
constexpr int INF = 1001001001;
constexpr int mod = 1000000007;
// constexpr int mod = 998244353;
template<class T>
inline bool chmax(T& x, T y){
if(x < y){
x = y;
return true;
}
return false;
}
template<class T>
inline bool chmin(T& x, T y){
if(x > y){
x = y;
return true;
}
return false;
}
/**
* @brief Dinic-Capacity-Scaling(最大流)
* @docs docs/dinic-capacity-scaling.md
*/
template< typename flow_t >
struct DinicCapacityScaling {
static_assert(is_integral< flow_t >::value, "template parameter flow_t must be integral type");
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool isrev;
int idx;
};
vector< vector< edge > > graph;
vector< int > min_cost, iter;
flow_t max_cap;
explicit DinicCapacityScaling(int V) : INF(numeric_limits< flow_t >::max()), graph(V), max_cap(0) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
max_cap = max(max_cap, cap);
graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});
graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});
}
bool build_augment_path(int s, int t, const flow_t &base) {
min_cost.assign(graph.size(), -1);
queue< int > que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1) {
int p = que.front();
que.pop();
for(auto &e : graph[p]) {
if(e.cap >= base && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t find_augment_path(int idx, const int t, flow_t base, flow_t flow) {
if(idx == t) return flow;
flow_t sum = 0;
for(int &i = iter[idx]; i < graph[idx].size(); i++) {
edge &e = graph[idx][i];
if(e.cap >= base && min_cost[idx] < min_cost[e.to]) {
flow_t d = find_augment_path(e.to, t, base, min(flow - sum, e.cap));
if(d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
sum += d;
if(flow - sum < base) break;
}
}
}
return sum;
}
flow_t max_flow(int s, int t) {
if(max_cap == flow_t(0)) return flow_t(0);
flow_t flow = 0;
for(int i = 63 - __builtin_clzll(max_cap); i >= 0; i--) {
flow_t now = flow_t(1) << i;
while(build_augment_path(s, t, now)) {
iter.assign(graph.size(), 0);
flow += find_augment_path(s, t, now, INF);
}
}
return flow;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
}
}
}
};
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int H, W;
cin >> H >> W;
vector<vector<ll>> G(H, vector<ll>(W));
int s = H * W + H + W, t = s + 1, V = s + 2;
DinicCapacityScaling<ll> g(V);
ll ans = 0;
for(int i = 0; i < H; ++i){
for(int j = 0; j < W; ++j){
cin >> G[i][j];
int v = i * W + j;
g.add_edge(s, v, 0);
g.add_edge(v, t, G[i][j]);
int w = H * W + i, x = H * W + H + j;
g.add_edge(w, v, INF);
g.add_edge(x, v, INF);
}
}
vector<ll> R(H), C(W);
for(int i = 0; i < H; ++i){
cin >> R[i];
ans += R[i];
int v = H * W + i;
g.add_edge(s, v, R[i]);
g.add_edge(v, t, 0);
}
for(int i = 0; i < W; ++i){
cin >> C[i];
ans += C[i];
int v = H * W + H + i;
g.add_edge(s, v, C[i]);
g.add_edge(v, t, 0);
}
ans -= g.max_flow(s, t);
cout << ans << endl;
return 0;
}