結果
| 問題 |
No.1036 Make One With GCD 2
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-03-01 21:48:59 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 615 ms / 2,000 ms |
| コード長 | 10,280 bytes |
| コンパイル時間 | 13,982 ms |
| コンパイル使用メモリ | 378,764 KB |
| 実行使用メモリ | 31,232 KB |
| 最終ジャッジ日時 | 2024-09-16 14:35:43 |
| 合計ジャッジ時間 | 23,541 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 41 |
ソースコード
fn main() {
let mut io = IO::new();
input!{ from io,
n: usize,
a: [i64; n]
}
let mut swg = SwagDeque::new();
let mut r = 0;
let mut ans = n * (n + 1) / 2;
for i in 0..n {
if r < i {
r = i;
}
while r < n && gcd(swg.fold_all().unwrap_or(Gcd::zero()).0, a[r]) > 1 {
swg.push_back(Gcd(a[r]));
r += 1;
}
ans -= swg.len();
swg.pop_front();
}
io.println(ans);
}
#[derive(Clone, PartialEq)]
struct Gcd(i64);
impl Associative for Gcd {}
impl Zero for Gcd {
fn zero() -> Self { Self(0) }
}
impl Add for Gcd {
type Output = Self;
fn add(self, rhs: Self) -> Self {
Self(gcd(self.0, rhs.0))
}
}
pub fn gcd(mut a: i64, mut b: i64) -> i64 {
while b != 0 {
a %= b;
std::mem::swap(&mut a, &mut b);
}
a
}
// ------------ Swag Deque start ------------
#[derive(Default)]
pub struct SwagDeque<T: SemiGroup> {
front: Vec<(T, T)>,
back: Vec<(T, T)>,
}
impl<T: SemiGroup> SwagDeque<T> {
pub fn new() -> Self {
Self {
front: Vec::new(),
back: Vec::new(),
}
}
pub fn len(&self) -> usize {
self.front.len() + self.back.len()
}
pub fn is_empty(&self) -> bool {
self.front.is_empty() && self.back.is_empty()
}
fn _push<F>(stack: &mut Vec<(T, T)>, v: T, func: F)
where
F: FnOnce(T, T) -> T
{
let s = if let Some((_, x)) = stack.last() {
func(x.clone(), v.clone())
} else {
v.clone()
};
stack.push((v, s));
}
fn _pop<F>(stack: &mut Vec<(T, T)>, other: &mut Vec<(T, T)>, func: F) -> Option<T>
where
F: Fn(T, T) -> T
{
if stack.is_empty() {
let n = other.len();
let temp = other.split_off((n+1)/2);
for (v, _) in other.drain(..).rev() {
let s = if let Some((_, x)) = stack.last() {
func(x.clone(), v.clone())
} else {
v.clone()
};
stack.push((v, s));
}
for (v, _) in temp {
let s = if let Some((_, x)) = other.last() {
func(v.clone(), x.clone())
} else {
v.clone()
};
other.push((v, s));
}
// self.back.clear();
}
if let Some((x, _)) = stack.pop() {
Some(x)
} else {
None
}
}
pub fn push_back(&mut self, v: T) {
Self::_push(&mut self.back, v, |x, v| x + v);
}
pub fn push_front(&mut self, v: T) {
Self::_push(&mut self.front, v, |x, v| v + x);
}
pub fn pop_back(&mut self) -> Option<T> {
Self::_pop(&mut self.back, &mut self.front, |x, v| x + v)
}
pub fn pop_front(&mut self) -> Option<T> {
Self::_pop(&mut self.front, &mut self.back, |x, v| v + x)
}
pub fn fold_all(&self) -> Option<T> {
match (self.front.last(), self.back.last()) {
(Some(u), Some(v)) => Some(u.1.clone() + v.1.clone()),
(Some(u), None) => Some(u.1.clone()),
(None, Some(v)) => Some(v.1.clone()),
(None, None) => None,
}
}
}
// ------------ Swag Deque end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
/// 結合性
pub trait Associative: Magma {}
/// マグマ
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
/// 群
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
/// 半環
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
/// 体
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
/// 加法単元
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
/// 乗法単元
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------