結果

問題 No.1036 Make One With GCD 2
ユーザー nebocconebocco
提出日時 2021-03-01 21:48:59
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 615 ms / 2,000 ms
コード長 10,280 bytes
コンパイル時間 13,982 ms
コンパイル使用メモリ 378,764 KB
実行使用メモリ 31,232 KB
最終ジャッジ日時 2024-09-16 14:35:43
合計ジャッジ時間 23,541 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 229 ms
15,616 KB
testcase_01 AC 44 ms
10,880 KB
testcase_02 AC 75 ms
31,232 KB
testcase_03 AC 7 ms
5,376 KB
testcase_04 AC 12 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 16 ms
5,760 KB
testcase_08 AC 13 ms
5,376 KB
testcase_09 AC 165 ms
10,496 KB
testcase_10 AC 153 ms
9,728 KB
testcase_11 AC 167 ms
10,624 KB
testcase_12 AC 154 ms
9,984 KB
testcase_13 AC 356 ms
14,464 KB
testcase_14 AC 358 ms
14,592 KB
testcase_15 AC 336 ms
13,824 KB
testcase_16 AC 339 ms
13,824 KB
testcase_17 AC 349 ms
14,208 KB
testcase_18 AC 1 ms
5,376 KB
testcase_19 AC 1 ms
5,376 KB
testcase_20 AC 1 ms
5,376 KB
testcase_21 AC 1 ms
5,376 KB
testcase_22 AC 333 ms
13,568 KB
testcase_23 AC 243 ms
10,496 KB
testcase_24 AC 346 ms
14,080 KB
testcase_25 AC 315 ms
13,056 KB
testcase_26 AC 327 ms
13,440 KB
testcase_27 AC 1 ms
5,376 KB
testcase_28 AC 1 ms
5,376 KB
testcase_29 AC 1 ms
5,376 KB
testcase_30 AC 1 ms
5,376 KB
testcase_31 AC 1 ms
5,376 KB
testcase_32 AC 1 ms
5,376 KB
testcase_33 AC 1 ms
5,376 KB
testcase_34 AC 1 ms
5,376 KB
testcase_35 AC 1 ms
5,376 KB
testcase_36 AC 1 ms
5,376 KB
testcase_37 AC 1 ms
5,376 KB
testcase_38 AC 83 ms
30,720 KB
testcase_39 AC 615 ms
14,976 KB
testcase_40 AC 244 ms
10,496 KB
testcase_41 AC 300 ms
15,360 KB
testcase_42 AC 300 ms
15,104 KB
testcase_43 AC 263 ms
19,228 KB
testcase_44 AC 290 ms
17,208 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

fn main() {
	let mut io = IO::new();
    input!{ from io,
		n: usize,
		a: [i64; n]
    }
	let mut swg = SwagDeque::new();
	let mut r = 0;
	let mut ans = n * (n + 1) / 2;
	for i in 0..n {
		if r < i {
			r = i;
		}
		while r < n && gcd(swg.fold_all().unwrap_or(Gcd::zero()).0, a[r]) > 1 {
			swg.push_back(Gcd(a[r]));
			r += 1;
		}
		ans -= swg.len();
		swg.pop_front();
	}
    io.println(ans);
}

#[derive(Clone, PartialEq)]
struct Gcd(i64);

impl Associative for Gcd {}

impl Zero for Gcd {
	fn zero() -> Self { Self(0) }
}

impl Add for Gcd {
	type Output = Self;
	fn add(self, rhs: Self) -> Self {
		Self(gcd(self.0, rhs.0))
	}
}

pub fn gcd(mut a: i64, mut b: i64) -> i64 {
    while b != 0 {
        a %= b;
        std::mem::swap(&mut a, &mut b);
    }
    a
}

// ------------ Swag Deque start ------------
#[derive(Default)]
pub struct SwagDeque<T: SemiGroup> {
    front: Vec<(T, T)>,
    back: Vec<(T, T)>,
}

impl<T: SemiGroup> SwagDeque<T> {
    pub fn new() -> Self {
        Self {
            front: Vec::new(),
            back: Vec::new(),
        }
    }

    pub fn len(&self) -> usize {
        self.front.len() + self.back.len()
    }

    pub fn is_empty(&self) -> bool {
        self.front.is_empty() && self.back.is_empty()
    }

    fn _push<F>(stack: &mut Vec<(T, T)>, v: T, func: F)
        where
            F: FnOnce(T, T) -> T
    {
        let s = if let Some((_, x)) = stack.last() {
            func(x.clone(), v.clone())
        } else {
            v.clone()
        };
        stack.push((v, s));
    }

    fn _pop<F>(stack: &mut Vec<(T, T)>, other: &mut Vec<(T, T)>, func: F) -> Option<T>
        where
            F: Fn(T, T) -> T
    {
        if stack.is_empty() {
            let n = other.len();
            let temp = other.split_off((n+1)/2);
            for (v, _) in other.drain(..).rev() {
                let s = if let Some((_, x)) = stack.last() {
                    func(x.clone(), v.clone())
                } else {
                    v.clone()
                };
                stack.push((v, s));
            }
            for (v, _) in temp {
                let s = if let Some((_, x)) = other.last() {
                    func(v.clone(), x.clone())
                } else {
                    v.clone()
                };
                other.push((v, s));
            }
            // self.back.clear();
        }
        if let Some((x, _)) = stack.pop() {
            Some(x)
        } else {
            None
        }
    }

    pub fn push_back(&mut self, v: T) {
        Self::_push(&mut self.back, v, |x, v| x + v);
    }

    pub fn push_front(&mut self, v: T) {
        Self::_push(&mut self.front, v, |x, v| v + x);
    }

    pub fn pop_back(&mut self) -> Option<T> {
        Self::_pop(&mut self.back, &mut self.front, |x, v| x + v)
    }

    pub fn pop_front(&mut self) -> Option<T> {
        Self::_pop(&mut self.front, &mut self.back, |x, v| v + x)
    }

    pub fn fold_all(&self) -> Option<T> {
        match (self.front.last(), self.back.last()) {
            (Some(u), Some(v)) => Some(u.1.clone() + v.1.clone()),
            (Some(u), None) => Some(u.1.clone()),
            (None, Some(v)) => Some(v.1.clone()),
            (None, None) => None,
        }
    }
}
// ------------ Swag Deque end ------------


// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;

/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}

/// 結合性
pub trait Associative: Magma {}

/// マグマ
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}

/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}

/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}

pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}

/// 群
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}

pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}

/// 半環
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}

/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}

pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}

/// 体
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}

/// 加法単元
pub trait Zero: Element {
    fn zero() -> Self;
    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }
}

/// 乗法単元
pub trait One: Element {
    fn one() -> Self;
    fn is_one(&self) -> bool {
        *self == Self::one()
    }
}

macro_rules! impl_integer {
    ($($T:ty,)*) => {
        $(
            impl Associative for $T {}

            impl Zero for $T {
                fn zero() -> Self { 0 }
                fn is_zero(&self) -> bool { *self == 0 }
            }

            impl<'a> Zero for &'a $T {
                fn zero() -> Self { &0 }
                fn is_zero(&self) -> bool { *self == &0 }
            }

            impl One for $T {
                fn one() -> Self { 1 }
                fn is_one(&self) -> bool { *self == 1 }
            }

            impl<'a> One for &'a $T {
                fn one() -> Self { &1 }
                fn is_one(&self) -> bool { *self == &1 }
            }
        )*
    };
}

impl_integer! {
    i8, i16, i32, i64, i128, isize,
    u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------



// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};

pub struct IO {
	iter: std::str::SplitAsciiWhitespace<'static>,
	buf: BufWriter<StdoutLock<'static>>,
}

impl IO {
	pub fn new() -> Self {
		let mut input = String::new();
		std::io::stdin().read_to_string(&mut input).unwrap();
		let input = Box::leak(input.into_boxed_str());
		let out = Box::new(stdout());
		IO {
			iter: input.split_ascii_whitespace(),
			buf: BufWriter::new(Box::leak(out).lock()),
		}
	}
	fn scan_str(&mut self) -> &'static str {
		self.iter.next().unwrap()
	}
	pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
		<T as Scan>::scan(self)
	}
	pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
		(0..n).map(|_| self.scan::<T>()).collect()
	}
	pub fn print<T: Print>(&mut self, x: T) {
		<T as Print>::print(self, x);
	}
	pub fn println<T: Print>(&mut self, x: T) {
		self.print(x);
		self.print("\n");
	}
	pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
		if let Some(v) = iter.next() {
			self.print(v);
			for v in iter {
				self.print(delim);
				self.print(v);
			}
		}
		self.print("\n");
	}
	pub fn flush(&mut self) {
		self.buf.flush().unwrap();
	}
}

impl Default for IO {
	fn default() -> Self {
		Self::new()
	}
}

pub trait Scan {
	type Output;
	fn scan(io: &mut IO) -> Self::Output;
}

macro_rules! impl_scan {
	($($t:tt),*) => {
		$(
			impl Scan for $t {
				type Output = Self;
				fn scan(s: &mut IO) -> Self::Output {
					s.scan_str().parse().unwrap()
				}
			}
		)*
	};
}

impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);

pub enum Bytes {}
impl Scan for Bytes {
	type Output = &'static [u8];
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().as_bytes()
	}
}

pub enum Chars {}
impl Scan for Chars {
	type Output = Vec<char>;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().chars().collect()
	}
}

pub enum Usize1 {}
impl Scan for Usize1 {
	type Output = usize;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan::<usize>().wrapping_sub(1)
	}
}

impl<T: Scan, U: Scan> Scan for (T, U) {
	type Output = (T::Output, U::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s))
	}
}

impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
	type Output = (T::Output, U::Output, V::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s), V::scan(s))
	}
}

impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
	type Output = (T::Output, U::Output, V::Output, W::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
	}
}

pub trait Print {
	fn print(w: &mut IO, x: Self);
}

macro_rules! impl_print_int {
	($($t:ty),*) => {
		$(
			impl Print for $t {
				fn print(w: &mut IO, x: Self) {
					w.buf.write_all(x.to_string().as_bytes()).unwrap();
				}
			}
		)*
	};
}

impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);

impl Print for u8 {
	fn print(w: &mut IO, x: Self) {
		w.buf.write_all(&[x]).unwrap();
	}
}

impl Print for &[u8] {
	fn print(w: &mut IO, x: Self) {
		w.buf.write_all(x).unwrap();
	}
}

impl Print for &str {
	fn print(w: &mut IO, x: Self) {
		w.print(x.as_bytes());
	}
}

impl Print for String {
	fn print(w: &mut IO, x: Self) {
		w.print(x.as_bytes());
	}
}

impl<T: Print, U: Print> Print for (T, U) {
	fn print(w: &mut IO, (x, y): Self) {
		w.print(x);
		w.print(" ");
		w.print(y);
	}
}

impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
	fn print(w: &mut IO, (x, y, z): Self) {
		w.print(x);
		w.print(" ");
		w.print(y);
		w.print(" ");
		w.print(z);
	}
}

mod neboccoio_macro {
	#[macro_export]
	macro_rules! input {
		(@start $io:tt @read @rest) => {};

		(@start $io:tt @read @rest, $($rest: tt)*) => {
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @rest mut $($rest:tt)*) => {
			input!(@start $io @read @mut [mut] @rest $($rest)*)
		};

		(@start $io:tt @read @rest $($rest:tt)*) => {
			input!(@start $io @read @mut [] @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
			let $($mut)* $var = $io.scan_vec::<$kind>($len);
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
			let $($mut)* $var = $io.scan::<$kind>();
			input!(@start $io @read @rest $($rest)*)
		};

		(from $io:tt $($rest:tt)*) => {
			input!(@start $io @read @rest $($rest)*)
		};
	}
}

// ------------ io module end ------------
0