結果
| 問題 |
No.1030 だんしんぐぱーりない
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-03-02 19:40:01 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 172 ms / 2,000 ms |
| コード長 | 13,537 bytes |
| コンパイル時間 | 13,922 ms |
| コンパイル使用メモリ | 378,136 KB |
| 実行使用メモリ | 24,844 KB |
| 最終ジャッジ日時 | 2024-10-03 01:59:45 |
| 合計ジャッジ時間 | 20,074 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 40 |
ソースコード
fn main() {
let mut io = IO::new();
input!{ from io,
n: usize, k: usize, q: usize,
mut act: [i64; n],
bev: [Usize1; k],
ed: [(Usize1, Usize1); n-1],
query: [(i32, Usize1, Usize1); q],
}
let mut hld = HeavyLightDecomposition::new(n);
for &(u, v) in &ed {
hld.add_edge(u, v);
}
hld.build(0);
let mut euler = (0..n).collect::<Vec<_>>();
euler.sort_by_key(|&i| hld.id(i));
for &v in &euler {
if hld.parent[v] < n {
act[v] = act[v].max(act[hld.parent[v]]);
}
}
let mut seg = SegmentTree2::from(&bev, n, |&u, &v| if u == n {
v
} else if v == n {
u
} else {
hld.lca(u, v)
});
for &(t, u, v) in &query {
if t == 1 {
seg.set(u, v);
} else {
io.println(act[seg.fold(u..=v)]);
}
}
}
// ------------ Heavy Light Decomposition start ------------
// ------------ Segment Tree with function start ------------
pub struct SegmentTree2<T: Element, F: Fn(&T, &T) -> T> {
size: usize,
node: Vec<T>,
zero: T,
func: F
}
impl<T: Element, F: Fn(&T, &T) -> T> SegmentTree2<T, F> {
pub fn new(n0: usize, zero: T, func: F) -> Self {
let size = n0.next_power_of_two();
let node = vec![zero.clone(); size * 2];
Self {
size, node, zero, func
}
}
pub fn from(vec: &[T], zero: T, func: F) -> Self {
let size = vec.len().next_power_of_two();
let mut node = vec![zero.clone(); size << 1];
node[size..(vec.len() + size)].clone_from_slice(&vec[..]);
for i in (1..size).rev() {
node[i] = func(&node[i << 1], &node[(i << 1) + 1]);
}
Self {
size, node, zero, func
}
}
pub fn set(&mut self, mut i: usize, x: T) {
i += self.size;
self.node[i] = x;
self.fix(i);
}
fn fix(&mut self, mut i: usize) {
while i > 0 {
i >>= 1;
self.node[i] = (self.func)(&self.node[i << 1], &self.node[(i << 1) + 1]);
}
}
pub fn fold<R: RangeBounds<usize>>(&self, rng: R) -> T {
let Range { start, end } = bounds_within(rng, self.size);
let mut vl = self.zero.clone();
let mut vr = self.zero.clone();
let mut l = start + self.size;
let mut r = end + self.size;
while l < r {
if l & 1 == 1 {
vl = (self.func)(&vl, &self.node[l]);
l += 1;
}
if r & 1 == 1 {
r -= 1;
vr = (self.func)(&self.node[r], &vr);
}
l >>= 1;
r >>= 1;
}
(self.func)(&vl, &vr)
}
}
impl<T: Element, F: Fn(&T, &T) -> T> Index<usize> for SegmentTree2<T, F> {
type Output = T;
fn index(&self, i: usize) -> &Self::Output {
assert!(i < self.size, "index out of range: length is {}, but given {}.", self.size, i);
&self.node[i + self.size]
}
}
// ------------ Segment Tree with function end ------------
use std::ops::Bound::{Excluded, Included, Unbounded};
use std::ops::{Range, RangeBounds};
/// 区間を配列サイズに収まるように丸める。
///
/// 与えられた区間 `r` と `0..len` の共通部分を、有界な半開区間として返す。
///
/// # Examples
/// ```
/// use bibliotheca::utils::bounds::bounds_within;
///
/// assert_eq!(bounds_within(.., 7), 0..7);
/// assert_eq!(bounds_within(..=4, 7), 0..5);
/// ```
pub fn bounds_within<R: RangeBounds<usize>>(r: R, len: usize) -> Range<usize> {
let e_ex = match r.end_bound() {
Included(&e) => e + 1,
Excluded(&e) => e,
Unbounded => len,
}
.min(len);
let s_in = match r.start_bound() {
Included(&s) => s,
Excluded(&s) => s + 1,
Unbounded => 0,
}
.min(e_ex);
s_in..e_ex
}
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
/// 結合性
pub trait Associative: Magma {}
/// マグマ
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
/// 群
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
/// 半環
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
/// 体
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
/// 加法単元
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
/// 乗法単元
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
pub struct HeavyLightDecomposition {
graph: Vec<Vec<usize>>,
index: Vec<usize>, // 新しい頂点番号
parent: Vec<usize>, // 親
head: Vec<usize>, // 属するHeavy Pathの根
range: Vec<usize>, // 部分木の開区間右端
}
impl HeavyLightDecomposition {
pub fn new(n: usize) -> Self {
Self {
graph: vec![Vec::new(); n],
index: Vec::new(),
parent: Vec::new(),
head: Vec::new(),
range: Vec::new(),
}
}
pub fn add_edge(&mut self, u: usize, v: usize) {
self.graph[u].push(v);
self.graph[v].push(u);
}
pub fn build(&mut self, root: usize) {
let graph = &mut self.graph;
let n = graph.len();
let mut index = vec![0; n];
let mut parent = vec![n; n];
let mut head = vec![root; n];
let mut range = vec![0; n];
let mut siz = vec![1; n];
let mut st = Vec::new();
st.push(root);
while let Some(v) = st.pop() {
if v < n {
st.push(!v);
if let Some(k) = graph[v].iter().position(|&u| u == parent[v]) {
graph[v].swap_remove(k);
}
graph[v].iter().for_each(|&u| { parent[u] = v; st.push(u); });
} else {
let v = !v;
for i in 0..graph[v].len() {
let u = graph[v][i];
siz[v] += siz[u];
if siz[graph[v][0]] < siz[u] {
graph[v].swap(0, i);
}
}
}
}
st.push(root);
let mut c = 0;
while let Some(v) = st.pop() {
if v < n {
st.push(!v);
index[v] = c; c += 1;
for &u in graph[v].iter().skip(1) {
head[u] = u;
st.push(u);
}
if let Some(&u) = graph[v].get(0) {
head[u] = head[v];
st.push(u);
}
} else {
range[!v] = c;
}
}
self.index = index;
self.parent = parent;
self.head = head;
self.range = range;
}
pub fn lca(&self, mut u: usize, mut v: usize) -> usize {
let parent = &self.parent;
let head = &self.head;
let index = &self.index;
while head[u] != head[v] {
if index[u] < index[v] {
v = parent[head[v]];
} else {
u = parent[head[u]];
}
}
if index[u] < index[v] {
u
} else {
v
}
}
fn for_each(&self, mut u: usize, mut v: usize, b: usize) -> (Vec<Range<usize>>, Vec<Range<usize>>) {
let parent = &self.parent;
let head = &self.head;
let index = &self.index;
let mut up = Vec::new();
let mut down = Vec::new();
while head[u] != head[v] {
if index[u] < index[v] {
let h = head[v];
down.push(index[h]..index[v] + 1);
v = parent[h];
} else {
let h = head[u];
up.push(index[h]..index[u] + 1);
u = parent[h];
}
}
if index[u] < index[v] {
down.push(index[u] + b .. index[v] + 1);
} else if index[v] + b < index[u] + 1 {
up.push(index[v] + b .. index[u] + 1);
}
down.reverse();
(up, down)
}
pub fn id(&self, v: usize) -> usize {
self.index[v]
}
pub fn for_each_vertex(&self, u: usize, v: usize) -> (Vec<Range<usize>>, Vec<Range<usize>>) {
self.for_each(u, v, 0)
}
pub fn for_each_edge(&self, u: usize, v: usize) -> (Vec<Range<usize>>, Vec<Range<usize>>) {
self.for_each(u, v, 1)
}
pub fn subtree_range(&self, v: usize) -> Range<usize> {
self.index[v]..self.range[v]
}
}
// ------------ Heavy Light Decomposition end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------