結果
問題 | No.1145 Sums of Powers |
ユーザー | jell |
提出日時 | 2021-03-03 03:22:00 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 633 ms / 2,000 ms |
コード長 | 39,610 bytes |
コンパイル時間 | 3,435 ms |
コンパイル使用メモリ | 283,736 KB |
実行使用メモリ | 14,720 KB |
最終ジャッジ日時 | 2024-10-03 03:05:55 |
合計ジャッジ時間 | 5,952 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 5 ms
5,248 KB |
testcase_03 | AC | 633 ms
14,592 KB |
testcase_04 | AC | 603 ms
14,720 KB |
testcase_05 | AC | 596 ms
14,720 KB |
ソースコード
#line 1 "other/y.cc" // #undef _GLIBCXX_DEBUG // #define NDEBUG #include <bits/extc++.h> #line 2 "Library/dev/fraction.hpp" /** * @file rational.hpp * @brief Rational */ namespace workspace { template <class _Tp> struct rational { _Tp __num{0}, __den{1}; constexpr rational() = default; constexpr rational(const _Tp &__x) : __num(__x) {} constexpr rational(const _Tp &__x, const _Tp __y) : __num(__x), __den(__y) {} constexpr rational operator+() const noexcept { return *this; } constexpr rational operator-() const noexcept { return {-__num, __den}; } constexpr rational operator+(const rational &__x) const noexcept { return {__num * __x.__den + __x.__num * __den, __den * __x.__den}; } constexpr rational operator-(const rational &__x) const noexcept { return {__num * __x.__den - __x.__num * __den, __den * __x.__den}; } constexpr rational operator+=(const rational &__x) noexcept { (__num *= __x.__den) += __den * __x.__num; __den *= __x.__den; return *this; } constexpr rational operator-=(const rational &__x) noexcept { (__num *= __x.__den) -= __den * __x.__num; __den *= __x.__den; return *this; } constexpr bool operator==(const rational &__x) const noexcept { return __num == __x.__num && __den == __x.den; } constexpr bool operator!=(const rational &__x) const noexcept { return __num != __x.__num || __den != __x.den; } constexpr bool operator<(const rational &__x) const noexcept; private: constexpr void normalize(); }; } // namespace workspace #line 2 "Library/src/algebra/polynomial.hpp" /** * @file polynomial.hpp * @brief Polynomial * @date 2021-02-19 * * */ #line 14 "Library/src/algebra/polynomial.hpp" #line 2 "Library/src/algebra/ntt.hpp" /** * @file ntt.hpp * @brief Number Theoretic Transform * @date 2021-02-20 * * */ #line 2 "Library/src/number_theory/ext_gcd.hpp" /** * @file ext_gcd.hpp * @brief Extended Euclidean Algorithm */ #line 9 "Library/src/number_theory/ext_gcd.hpp" #line 2 "Library/src/utils/sfinae.hpp" /** * @file sfinae.hpp * @brief SFINAE */ #line 10 "Library/src/utils/sfinae.hpp" #include <type_traits> #ifndef __INT128_DEFINED__ #ifdef __SIZEOF_INT128__ #define __INT128_DEFINED__ 1 #else #define __INT128_DEFINED__ 0 #endif #endif namespace std { #if __INT128_DEFINED__ template <> struct make_signed<__uint128_t> { using type = __int128_t; }; template <> struct make_signed<__int128_t> { using type = __int128_t; }; template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; }; template <> struct make_unsigned<__int128_t> { using type = __uint128_t; }; #endif } // namespace std namespace workspace { template <class Tp, class... Args> struct variadic_front { using type = Tp; }; template <class... Args> struct variadic_back; template <class Tp> struct variadic_back<Tp> { using type = Tp; }; template <class Tp, class... Args> struct variadic_back<Tp, Args...> { using type = typename variadic_back<Args...>::type; }; template <class type, template <class> class trait> using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type; /** * @brief Return type of subscripting ( @c [] ) access. */ template <class _Tp> using subscripted_type = typename std::decay<decltype(std::declval<_Tp&>()[0])>::type; template <class Container> using element_type = typename std::decay<decltype( *std::begin(std::declval<Container&>()))>::type; template <class _Tp, class = std::nullptr_t> struct has_begin : std::false_type {}; template <class _Tp> struct has_begin<_Tp, decltype(std::begin(std::declval<_Tp>()), nullptr)> : std::true_type {}; template <class _Tp, class = std::nullptr_t> struct has_mod : std::false_type {}; template <class _Tp> struct has_mod<_Tp, decltype(_Tp::mod, nullptr)> : std::true_type {}; template <class _Tp, class = void> struct is_integral_ext : std::false_type {}; template <class _Tp> struct is_integral_ext< _Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type> : std::true_type {}; #if __INT128_DEFINED__ template <> struct is_integral_ext<__int128_t> : std::true_type {}; template <> struct is_integral_ext<__uint128_t> : std::true_type {}; #endif #if __cplusplus >= 201402 template <class _Tp> constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value; #endif template <typename _Tp, typename = void> struct multiplicable_uint { using type = uint_least32_t; }; template <typename _Tp> struct multiplicable_uint< _Tp, typename std::enable_if<(2 < sizeof(_Tp)) && (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> { using type = uint_least64_t; }; #if __INT128_DEFINED__ template <typename _Tp> struct multiplicable_uint<_Tp, typename std::enable_if<(4 < sizeof(_Tp))>::type> { using type = __uint128_t; }; #endif template <typename _Tp> struct multiplicable_int { using type = typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type; }; } // namespace workspace #line 11 "Library/src/number_theory/ext_gcd.hpp" namespace workspace { /** * @param __a Integer * @param __b Integer * @return Pair of integers (x, y) s.t. ax + by = g = gcd(a, b), 0 <= x < * |b/g|, -|a/g| < y <= 0. Return (0, 0) if (a, b) = (0, 0). */ template <typename _T1, typename _T2> constexpr auto ext_gcd(_T1 __a, _T2 __b) { static_assert(is_integral_ext<_T1>::value); static_assert(is_integral_ext<_T2>::value); using result_type = typename std::make_signed< typename std::common_type<_T1, _T2>::type>::type; result_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1}; // Euclidean algorithm while (b) { result_type t = a / b; r ^= p ^= r ^= p -= t * r; s ^= q ^= s ^= q -= t * s; b ^= a ^= b ^= a -= t * b; } // Normalize if (a < 0) p = -p, q = -q; if (p < 0) p += __b / a, q -= __a / a; return std::make_pair(p, q); } } // namespace workspace #line 2 "Library/src/number_theory/primitive_root.hpp" /** * @file primitive_root.hpp * @brief Primitive Root * @date 2020-12-28 */ #line 10 "Library/src/number_theory/primitive_root.hpp" namespace workspace { /** * @brief Compile time primitive root. * * @tparam __mod Positive integer * @return Minimum positive one if it exists. Otherwise 0. */ template <class Tp> constexpr typename std::enable_if<(is_integral_ext<Tp>::value), Tp>::type primitive_root(const Tp __mod) noexcept { assert(__mod > 0); using int_type = typename multiplicable_uint<Tp>::type; int_type __r = __mod, __p[16] = {}, *__q = __p; for (int_type __i = 2; __i <= __r / __i; ++__i) { if (__r % __i) continue; *__q++ = __i; while (!(__r % __i)) __r /= __i; } if (__r != 1) *__q++ = __r; int_type __tot = __mod; for (__q = __p; *__q; *__q++ = 0) (__tot /= *__q) *= *__q - 1; __r = __tot, __q = __p + 1, __p[0] = 1; for (int_type __i = 2; __i <= __r / __i; ++__i) { if (__r % __i) continue; *__q++ = __i; while (!(__r % __i)) __r /= __i; } if (__r != 1) *__q++ = __r; for (Tp __r = 1; __r != __mod; ++__r) { auto __cnt = 0; for (__q = __p; *__q; ++__q) { int_type __w = 1; for (int_type __e = __tot / *__q, __x = __r; __e; __e >>= 1, (__x *= __x) %= __mod) if (__e & 1) (__w *= __x) %= __mod; if (__w == 1 && ++__cnt > 1) break; } if (__cnt == 1) return __r; } return 0; }; } // namespace workspace #line 13 "Library/src/algebra/ntt.hpp" namespace workspace { namespace ntt_impl { /** * @see * https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp */ template <class _Tp> struct __coef { _Tp sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] constexpr __coef() : sum_e{} { if (_Tp::mod < 2) return; int cnt2 = __builtin_ctz(_Tp::mod - 1); _Tp e = 1; { auto p = (_Tp::mod - 1) >> cnt2; _Tp w = primitive_root(_Tp::mod); while (p) { if (p & 1) e *= w; p >>= 1; w *= w; } } _Tp ie = ext_gcd(decltype(_Tp::mod)(e), _Tp::mod).first; _Tp es[30] = {}, ies[30] = {}; // es[i]^(2^(2+i)) == 1 for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } _Tp now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } }; template <class _Tp> struct __icoef { _Tp sum_ie[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] constexpr __icoef() : sum_ie{} { if (_Tp::mod < 2) return; int cnt2 = __builtin_ctz(_Tp::mod - 1); _Tp e = 1; { auto p = (_Tp::mod - 1) >> cnt2; _Tp w = primitive_root(_Tp::mod); while (p) { if (p & 1) e *= w; p >>= 1; w *= w; } } _Tp ie = ext_gcd(decltype(_Tp::mod)(e), _Tp::mod).first; _Tp es[30] = {}, ies[30] = {}; // es[i]^(2^(2+i)) == 1 for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } _Tp now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } }; template <class _Tp> struct __ipow2 { _Tp __ip2[30]; constexpr __ipow2() : __ip2{1, (1 + _Tp::mod) / 2} { for (size_t __i = 1; __i + 1 != std::size(__ip2); ++__i) __ip2[__i + 1] = __ip2[__i] * __ip2[1]; } }; template <class _FIter> constexpr void ntt(_FIter __first, _FIter __last) noexcept { using value_type = typename std::decay<decltype(*__first)>::type; constexpr __coef<value_type> _; auto __h = __builtin_ctz(std::distance(__first, __last)); for (ptrdiff_t __p = 1 << __h; __p >>= 1;) { value_type now = -1; auto __l = __first; for (size_t __s = 1 << __h; __l != __last; now *= _.sum_e[__builtin_ctz(--__s)]) { auto __r = __l + __p; for (auto __mid = __r; __l != __mid; ++__l, ++__r) { auto __tmp = *__l; *__l -= *__r *= now; *__r += __tmp; } __l = __r; } } } template <class _A> constexpr void ntt(_A &a) noexcept { ntt(std::begin(a), std::end(a)); } template <class _FIter> constexpr void intt(_FIter __first, _FIter __last) noexcept { using value_type = typename std::decay<decltype(*__first)>::type; constexpr __icoef<value_type> _; auto __h = __builtin_ctz(std::distance(__first, __last)); for (ptrdiff_t __p = 1; __p >> __h ^ 1; __p <<= 1) { value_type inow = 1; auto __l = __first; for (size_t __s = 1 << __h; __l != __last; inow *= _.sum_ie[__builtin_ctz(--__s)]) { auto __r = __l + __p; for (auto __mid = __r; __l != __mid; ++__l, ++__r) { auto __tmp = (*__l - *__r) * inow; *__l += *__r; *__r = __tmp; } __l = __r; } } constexpr __ipow2<value_type> __; while (__first != __last) *--__last *= __.__ip2[__h]; } // namespace ntt_impl template <class _A> constexpr void intt(_A &a) noexcept { intt(std::begin(a), std::end(a)); } } // namespace ntt_impl using ntt_impl::intt; using ntt_impl::ntt; } // namespace workspace #line 17 "Library/src/algebra/polynomial.hpp" namespace workspace { /** * @brief Polynomial class. * * @tparam _Tp Ring structure * @tparam _Conv_threshold Threshold for convolution method */ template <class _Tp, std::size_t _Conv_threshold = 60> class polynomial : public std::vector<_Tp> { using vector = std::vector<_Tp>; using poly = polynomial; public: using vector::vector; using size_type = typename vector::size_type; protected: void _erase_leading_zeros() noexcept { auto __i = vector::_M_impl._M_finish; while (__i != vector::_M_impl._M_start && *(__i - 1) == _Tp(0)) --__i; vector::_M_erase_at_end(__i); } void _conv_naive(const poly& __x) noexcept { if (__x._M_impl._M_start == __x._M_impl._M_finish) vector::_M_erase_at_end(vector::_M_impl._M_start); else { vector::_M_default_append(__x._M_impl._M_finish - __x._M_impl._M_start - 1); for (auto __i = vector::_M_impl._M_finish; __i-- != vector::_M_impl._M_start;) { auto __j = __i, __k = __x._M_impl._M_start; *__i *= *__k++; while (__j != vector::_M_impl._M_start && __k != __x._M_impl._M_finish) *__i += *--__j * *__k++; } } } void _conv_fft(poly&& __x) noexcept { if constexpr (has_mod<_Tp>::value) _conv_ntt(std::move(__x)); else { assert(0); // Not implemented! } } void _conv_ntt(poly&& __x) noexcept { size_type __n = vector::_M_impl._M_finish - vector::_M_impl._M_start, __m = __x._M_impl._M_finish - __x._M_impl._M_start, __len = 1 << (32 - __builtin_clz(__n + __m - 1)); vector::_M_default_append(__len - __n); __x._M_default_append(__len - __m); ntt(vector::_M_impl._M_start, vector::_M_impl._M_finish); ntt(__x._M_impl._M_start, __x._M_impl._M_finish); for (auto __i = vector::_M_impl._M_start, __j = __x._M_impl._M_start; __i != vector::_M_impl._M_finish; ++__i, ++__j) *__i *= std::move(*__j); intt(vector::_M_impl._M_start, vector::_M_impl._M_finish); vector::_M_erase_at_end(vector::_M_impl._M_start + __n + __m - 1); } /** * @brief * * @param __x * @return Degree of __x. */ size_type _divmod_naive(const poly& __x) { auto __xfin = __x._M_impl._M_finish; auto __xlen = __x.size(); while (__xfin != __x._M_impl._M_start && *(__xfin - 1) == _Tp(0)) --__xfin, --__xlen; assert(__xlen != 0); _erase_leading_zeros(); auto __p = vector::_M_impl._M_finish; while (size_type(__p - vector::_M_impl._M_start) >= __xlen) { --__p; auto __src = __xfin; auto __dst = __p; *__dst /= *--__src; while (__src != __x._M_impl._M_start) *--__dst -= *--__src * *__p; } return std::min<size_type>(__xlen - 1, __p - vector::_M_impl._M_start); } void _div_naive(const poly& __x) { operator>>=(_divmod_naive(__x)); } void _div_doubling(poly&& __x) noexcept { _erase_leading_zeros(); __x._erase_leading_zeros(); auto __n = vector::_M_impl._M_finish - vector::_M_impl._M_start; auto __m = __x._M_impl._M_finish - __x._M_impl._M_start; if (__n < __m) vector::clear(); else { assert(__m != 0); std::reverse(__x._M_impl._M_start, __x._M_impl._M_finish); __x = __x.inv(__m); if (size_type(__n - __m + 1) < __x.size()) __x.resize(__n - __m + 1); std::reverse(vector::_M_impl._M_start, vector::_M_impl._M_finish); vector::_M_erase_at_end(vector::_M_impl._M_finish - (__m - 1)); operator*=(__x).resize(__n - __m + 1); std::reverse(vector::_M_impl._M_start, vector::_M_impl._M_finish); } } public: /** * @return Degree of %polynomial. Return -1 if it equals zero. */ size_type deg() const noexcept { return vector::size() - 1; } /** * @param __i Not exceeding the degree. * @return Coefficient of x^i. */ typename vector::reference operator[](size_type __i) noexcept { assert(__i < vector::size()); return *(vector::_M_impl._M_start + __i); } /** * @param __i Not exceeding the degree. * @return Coefficient of x^i. */ typename vector::const_reference operator[](size_type __i) const noexcept { assert(__i < vector::size()); return *(vector::_M_impl._M_start + __i); } /** * @brief Evaluate at given point. */ _Tp of(const _Tp& __a) const noexcept { _Tp __v(0), __p(1); for (auto __i = vector::_M_impl._M_start; __i != vector::_M_impl._M_finish; ++__i, __p *= __a) __v += *__i * __p; return __v; } operator bool() const noexcept { auto __first = vector::_M_impl._M_start, __last = vector::_M_impl._M_finish; while (__first != __last) if (*__first++ != _Tp(0)) return true; return false; } bool operator==(const poly& __x) const noexcept { auto __first1 = vector::_M_impl._M_start, __last1 = vector::_M_impl._M_finish; auto __first2 = __x._M_impl._M_start, __last2 = __x._M_impl._M_finish; if (__last1 - __first1 < __last2 - __first2) { while (__first1 != __last1) if (*__first1++ != *__first2++) return false; while (__first2 != __last2) if (*__first2++ != _Tp(0)) return false; } else { while (__first2 != __last2) if (*__first1++ != *__first2++) return false; while (__first1 != __last1) if (*__first1++ != _Tp(0)) return false; } return true; } bool operator!=(const poly& __x) const noexcept { return !operator==(__x); } /** * @brief Multiply by x^i. */ poly& operator<<=(size_type __i) noexcept { vector::insert(vector::begin(), __i, _Tp(0)); return *this; } /** * @brief Divide by x^i. */ poly& operator>>=(size_type __i) noexcept { vector::_M_erase_at_end( std::move(vector::_M_impl._M_start + std::min(__i, vector::size()), vector::_M_impl._M_finish, vector::_M_impl._M_start)); return *this; } /** * @brief Multiply by x^i. */ poly operator<<(size_type __i) const noexcept { return poly(*this).operator<<=(__i); } /** * @brief Divide by x^i. */ poly operator>>(size_type __i) const noexcept { return poly(*this).operator>>=(__i); } poly operator+() const noexcept { return *this; } poly operator-() const noexcept { poly __x = *this; for (auto __i = __x._M_impl._M_start; __i != __x._M_impl._M_finish; ++__i) *__i = -*__i; return __x; } poly& operator+=(const poly& __x) noexcept { if (vector::size() < __x.size()) vector::_M_default_append(__x.size() - vector::size()); for (auto __i = vector::_M_impl._M_start, __j = __x._M_impl._M_start; __j != __x._M_impl._M_finish; ++__i, ++__j) *__i += *__j; _erase_leading_zeros(); return *this; } poly& operator+=(const _Tp& __c) noexcept { if (__c != static_cast<_Tp>(0)) { if (vector::_M_impl._M_start == vector::_M_impl._M_finish) vector::emplace_back(__c); else *vector::_M_impl._M_start += __c, _erase_leading_zeros(); } return *this; } poly& operator-=(const poly& __x) noexcept { if (vector::size() < __x.size()) vector::_M_default_append(__x.size() - vector::size()); for (auto __i = vector::_M_impl._M_start, __j = __x._M_impl._M_start; __j != __x._M_impl._M_finish; ++__i, ++__j) *__i -= *__j; _erase_leading_zeros(); return *this; } poly& operator-=(const _Tp& __c) noexcept { if (__c != static_cast<_Tp>(0)) { if (vector::_M_impl._M_start == vector::_M_impl._M_finish) vector::emplace_back(-__c); else *vector::_M_impl._M_start -= __c, _erase_leading_zeros(); } return *this; } poly& operator*=(const poly& __x) noexcept { std::min(vector::size(), __x.size()) > _Conv_threshold ? _conv_fft(poly(__x)) : _conv_naive(this == &__x ? poly(__x) : __x); return *this; } poly& operator*=(poly&& __x) noexcept { std::min(vector::size(), __x.size()) > _Conv_threshold ? _conv_fft(std::move(__x)) : _conv_naive(__x); return *this; } poly& operator*=(const _Tp& __c) noexcept { if (__c == static_cast<_Tp>(0)) vector::_M_erase_at_end(vector::_M_impl._M_start); else for (auto __i = vector::_M_impl._M_start; __i != vector::_M_impl._M_finish; ++__i) *__i *= __c; return *this; } poly& operator/=(const _Tp& __c) noexcept { assert(__c != static_cast<_Tp>(0)); for (auto __i = vector::_M_impl._M_start; __i != vector::_M_impl._M_finish; ++__i) *__i /= __c; return *this; } poly rev() const noexcept { return rev(vector::size()); } poly rev(size_type __n) const noexcept { poly __r(__n); auto __src = vector::_M_impl._M_start; auto __dst = __r._M_impl._M_finish; for (size_type __i = std::min(__n, vector::size()); __i; --__i) *--__dst = *__src++; return __r; } poly inv() const noexcept { return inv(vector::size()); } poly inv(size_type __n) const noexcept { assert(__n != 0); assert(*vector::_M_impl._M_start != _Tp(0)); poly __x{_Tp(1) / *vector::_M_impl._M_start}; if (__n == 1) return __x; for (size_type __i = 2; __i < __n; __i <<= 1) { poly __y(__i); std::copy_n(vector::_M_impl._M_start, std::min(__i, vector::size()), __y._M_impl._M_start); __y *= __x; auto __p = __y._M_impl._M_start; *__p = 2 - *__p; while (++__p != __y._M_impl._M_finish) *__p = -*__p; (__x *= std::move(__y)).resize(__i); } poly __y = operator*(__x); auto __p = __y._M_impl._M_start; *__p = 2 - *__p; while (++__p != __y._M_impl._M_finish) *__p = -*__p; (__x *= std::move(__y)).resize(__n); return __x; } poly& operator/=(const poly& __x) noexcept { if (__x.size() > _Conv_threshold) _div_doubling(poly(__x)); else _div_naive(__x); return *this; } poly& operator/=(poly&& __x) noexcept { if (__x.size() > _Conv_threshold) _div_doubling(std::move(__x)); else _div_naive(__x); return *this; } poly& operator%=(const poly& __x) noexcept { if (__x.size() > _Conv_threshold) return operator-=(__x.operator*(operator/(__x))); vector::resize(_divmod_naive(__x)); return *this; } template <class _T> poly operator+(_T&& __x) const noexcept { return poly(*this).operator+=(std::forward<_T>(__x)); } template <class _T> poly operator-(_T&& __x) const noexcept { return poly(*this).operator-=(std::forward<_T>(__x)); } template <class _T> poly operator*(_T&& __x) const noexcept { return poly(*this).operator*=(std::forward<_T>(__x)); } template <class _T> poly operator/(_T&& __x) const noexcept { return poly(*this).operator/=(std::forward<_T>(__x)); } template <class _T> poly operator%(_T&& __x) const noexcept { return poly(*this).operator%=(std::forward<_T>(__x)); } std::pair<poly, poly> divmod(const poly& __x) const { if (__x.size() > _Conv_threshold) return {operator/(__x), operator%(__x)}; poly __rem(*this); auto __p = __rem._M_impl._M_start + __rem._divmod_naive(__x); poly __quot(__p, __rem._M_impl._M_finish); __rem._M_erase_at_end(__p); return {__quot, __rem}; } /** * @brief Differentiate. * * @return Derivative. */ poly deriv() const noexcept { if (auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish; __s != __f) { poly __der(++__s, __f); __s = __der._M_impl._M_start, __f = __der._M_impl._M_finish; for (_Tp __i(1); __s != __f; ++__s, __i += 1) *__s *= __i; __der._erase_leading_zeros(); return __der; } return {}; } /** * @brief Differentiate at given point. * * @return Derivative coefficient. */ _Tp deriv(const _Tp& __a) const noexcept { _Tp __der(0); if (auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish; __s != __f) for (_Tp __i(1), __p(1); ++__s != __f; __i += 1, __p *= __a) __der += *__s * __i * __p; return __der; } /** * @brief Integrate. * * @return Integral indefinite at the degrees divisible by the characteristic * of `_Tp`. Coefficients are set as 0 there. */ poly integ() const noexcept { if (auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish; __s != __f) { poly __int(__f - __s + 1); __f = std::copy(__s, __f, __int._M_impl._M_start + 1); __s = __int._M_impl._M_start + 1; for (_Tp __i(1); __s != __f; ++__s, __i += 1) __i == _Tp(0) ? assert(*__s == _Tp(0)) : void(*__s /= __i); return __int; } return {}; } /** * @brief Integrate in given range. * * @return Definite integral over [0, __a]. */ _Tp integ(const _Tp& __a) const noexcept { _Tp __int(0); auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish; for (_Tp __p(__a), __i(1); __s != __f; ++__s, __p *= __a, __i += 1) __int += *__s / __i * __p; return __int; } /** * @brief Integrate in given range. * * @return Definite integral over [__a, __b]. */ _Tp integ(const _Tp& __a, const _Tp& __b) const noexcept { _Tp __int(0); auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish; for (_Tp __pa(__a), __pb(__b), __i(1); __s != __f; ++__s, __pa *= __a, __pb *= __b, __i += 1) __int += *__s / __i * (__pb - __pa); return __int; } }; } // namespace workspace #line 2 "Library/src/modular/modint.hpp" /** * @file modint.hpp * * @brief Modular Arithmetic */ #line 12 "Library/src/modular/modint.hpp" #line 14 "Library/src/modular/modint.hpp" namespace workspace { namespace internal { /** * @brief Base of modular arithmetic. * * @tparam Mod identifier, which represents modulus if positive * @tparam Storage Reserved size for inverse calculation */ template <auto Mod, unsigned Storage> struct modint_base { static_assert(is_integral_ext<decltype(Mod)>::value, "Mod must be integral type."); using mod_type = typename std::make_signed<typename std::conditional< 0 < Mod, typename std::add_const<decltype(Mod)>::type, decltype(Mod)>::type>::type; using value_type = typename std::decay<mod_type>::type; using mul_type = typename multiplicable_uint<value_type>::type; static mod_type mod; static value_type storage; constexpr static void reserve(unsigned __n) noexcept { storage = __n; } value_type value = 0; public: constexpr modint_base() noexcept = default; template <class int_type, typename std::enable_if<is_integral_ext<int_type>::value>::type * = nullptr> constexpr modint_base(int_type n) noexcept : value((n %= mod) < 0 ? n += mod : n) {} constexpr modint_base(bool n) noexcept : value(n) {} constexpr operator value_type() const noexcept { return value; } constexpr static modint_base one() noexcept { return 1; } // unary operators {{ constexpr modint_base operator++(int) noexcept { modint_base __t{*this}; operator++(); return __t; } constexpr modint_base operator--(int) noexcept { modint_base __t{*this}; operator--(); return __t; } constexpr modint_base &operator++() noexcept { if (++value == mod) value = 0; return *this; } constexpr modint_base &operator--() noexcept { if (!value) value = mod; --value; return *this; } constexpr modint_base operator-() const noexcept { modint_base __t; __t.value = value ? mod - value : 0; return __t; } // }} unary operators // operator+= {{ constexpr modint_base &operator+=(const modint_base &rhs) noexcept { if ((value += rhs.value) >= mod) value -= mod; return *this; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type & operator+=(int_type const &rhs) noexcept { if (((value += rhs) %= mod) < 0) value += mod; return *this; } // }} operator+= // operator+ {{ template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator+(int_type const &rhs) const noexcept { return modint_base{*this} += rhs; } constexpr modint_base operator+(modint_base rhs) const noexcept { return rhs += *this; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator+(int_type const &lhs, modint_base rhs) noexcept { return rhs += lhs; } // }} operator+ // operator-= {{ constexpr modint_base &operator-=(const modint_base &rhs) noexcept { if ((value -= rhs.value) < 0) value += mod; return *this; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type & operator-=(int_type rhs) noexcept { if (((value -= rhs) %= mod) < 0) value += mod; return *this; } // }} operator-= // operator- {{ template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator-(int_type const &rhs) const noexcept { return modint_base{*this} -= rhs; } constexpr modint_base operator-(const modint_base &rhs) const noexcept { modint_base __t; if (((__t.value = value) -= rhs.value) < 0) __t.value += mod; return __t; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator-(int_type lhs, const modint_base &rhs) noexcept { if (((lhs -= rhs.value) %= mod) < 0) lhs += mod; modint_base __t; __t.value = lhs; return __t; } // }} operator- // operator*= {{ constexpr modint_base &operator*=(const modint_base &rhs) noexcept { value = static_cast<mul_type>(value) * rhs.value % mod; return *this; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type & operator*=(int_type rhs) noexcept { if (!rhs) value = 0; else if (value) { if ((rhs %= mod) < 0) rhs += mod; mul_type __r(value); value = static_cast<value_type &&>((__r *= rhs) %= mod); } return *this; } // }} operator*= // operator* {{ constexpr modint_base operator*(const modint_base &rhs) const noexcept { modint_base __t; __t.value = static_cast<mul_type>(value) * rhs.value % mod; return __t; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator*(int_type rhs) const noexcept { if (!value or !rhs) return {}; if ((rhs %= mod) < 0) rhs += mod; mul_type __r(value); modint_base __t; __t.value = static_cast<value_type &&>((__r *= rhs) %= mod); return __t; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator*(int_type lhs, const modint_base &rhs) noexcept { if (!lhs or !rhs.value) return {}; if ((lhs %= mod) < 0) lhs += mod; mul_type __r(lhs); modint_base __t; __t.value = static_cast<value_type &&>((__r *= rhs.value) %= mod); return __t; } // }} operator* protected: static value_type _mem(value_type __x) { static std::vector<value_type> __m{0, 1}; static value_type __i = (__m.reserve(Storage), 1); while (__i < __x) { ++__i; __m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod); } return __m[__x]; } template <class int_type> constexpr static typename std::enable_if<is_integral_ext<int_type>::value, value_type>::type _div(mul_type __r, int_type __x) noexcept { assert(__x); if (!__r) return 0; int_type __v{}; bool __neg = __x < 0 ? __x = -__x, true : false; if (__x < storage) __v = _mem(__x); else { int_type __y{mod}, __u{1}, __t; while (__x) __t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x, __v ^= __u ^= (__v -= __t * __u) ^= __u; if (__y < 0) __neg ^= 1; } if (__neg) __v = 0 < __v ? mod - __v : -__v; else if (__v < 0) __v += mod; if (__r == 1) return static_cast<value_type>(__v); return static_cast<value_type>((__r *= __v) %= mod); } public: // operator/= {{ constexpr modint_base &operator/=(const modint_base &rhs) noexcept { if (value) value = _div(value, rhs.value); return *this; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type & operator/=(int_type rhs) noexcept { if (value) value = _div(value, rhs %= mod); return *this; } // }} operator/= // operator/ {{ constexpr modint_base operator/(const modint_base &rhs) const noexcept { if (!value) return {}; modint_base __t; __t.value = _div(value, rhs.value); return __t; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator/(int_type rhs) const noexcept { if (!value) return {}; modint_base __t; __t.value = _div(value, rhs %= mod); return __t; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator/(int_type lhs, const modint_base &rhs) noexcept { if (!lhs) return {}; if ((lhs %= mod) < 0) lhs += mod; modint_base __t; __t.value = _div(lhs, rhs.value); return __t; } // }} operator/ constexpr modint_base inv() const noexcept { return _div(1, value); } template <class int_type> friend constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type pow(modint_base b, int_type e) noexcept { if (e < 0) { e = -e; b.value = _div(1, b.value); } modint_base __r; for (__r.value = 1; e; e >>= 1, b *= b) if (e & 1) __r *= b; return __r; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type pow(int_type e) const noexcept { modint_base __r, b; __r.value = 1; for (b.value = e < 0 ? e = -e, _div(1, value) : value; e; e >>= 1, b *= b) if (e & 1) __r *= b; return __r; } friend std::ostream &operator<<(std::ostream &os, const modint_base &rhs) noexcept { return os << rhs.value; } friend std::istream &operator>>(std::istream &is, modint_base &rhs) noexcept { intmax_t value; rhs = (is >> value, value); return is; } }; template <auto Mod, unsigned Storage> typename modint_base<Mod, Storage>::mod_type modint_base<Mod, Storage>::mod = Mod > 0 ? Mod : 0; template <auto Mod, unsigned Storage> typename modint_base<Mod, Storage>::value_type modint_base<Mod, Storage>::storage = Storage; } // namespace internal /** * @brief Modular arithmetic. * * @tparam Mod modulus * @tparam Storage Reserved size for inverse calculation */ template <auto Mod, unsigned Storage = 0, typename std::enable_if<(Mod > 0)>::type * = nullptr> using modint = internal::modint_base<Mod, Storage>; /** * @brief Runtime modular arithmetic. * * @tparam type_id uniquely assigned * @tparam Storage Reserved size for inverse calculation */ template <unsigned type_id = 0, unsigned Storage = 0> using modint_runtime = internal::modint_base<-(signed)type_id, Storage>; // #define modint_newtype modint_runtime<__COUNTER__> } // namespace workspace #line 2 "Library/src/utils/io/ostream.hpp" /** * @file ostream.hpp * @brief Output Stream */ #line 9 "Library/src/utils/io/ostream.hpp" namespace workspace { template <class _Os> struct is_ostream { template <typename... _Args> static std::true_type __test(std::basic_ostream<_Args...> *); static std::false_type __test(void *); constexpr static bool value = decltype(__test(std::declval<_Os *>()))::value; }; template <class _Os> using ostream_ref = typename std::enable_if<is_ostream<_Os>::value, _Os &>::type; /** * @brief Stream insertion operator for C-style array. * * @param __os Output stream * @param __a Array * @return Reference to __os. */ template <class _Os, class _Tp, size_t _Nm> typename std::enable_if<bool(sizeof(_Tp) > 2), ostream_ref<_Os>>::type operator<<(_Os &__os, const _Tp (&__a)[_Nm]) { if constexpr (_Nm) { __os << *__a; for (auto __i = __a + 1, __e = __a + _Nm; __i != __e; ++__i) __os << ' ' << *__i; } return __os; } /** * @brief Stream insertion operator for std::pair. * * @param __os Output stream * @param __p Pair * @return Reference to __os. */ template <class _Os, class _T1, class _T2> ostream_ref<_Os> operator<<(_Os &__os, const std::pair<_T1, _T2> &__p) { return __os << __p.first << ' ' << __p.second; } /** * @brief Stream insertion operator for std::tuple. * * @param __os Output stream * @param __t Tuple * @return Reference to __os. */ template <class _Os, class _Tp, size_t _Nm = 0> typename std::enable_if<bool(std::tuple_size<_Tp>::value + 1), ostream_ref<_Os>>::type operator<<(_Os &__os, const _Tp &__t) { if constexpr (_Nm != std::tuple_size<_Tp>::value) { if constexpr (_Nm) __os << ' '; __os << std::get<_Nm>(__t); operator<<<_Os, _Tp, _Nm + 1>(__os, __t); } return __os; } template <class _Os, class _Container, typename = decltype(std::begin(std::declval<_Container>()))> typename std::enable_if< !std::is_same<typename std::decay<_Container>::type, std::string>::value && !std::is_same<typename std::decay<_Container>::type, char *>::value, ostream_ref<_Os>>::type operator<<(_Os &__os, const _Container &__cont) { bool __h = true; for (auto &&__e : __cont) __h ? __h = 0 : (__os << ' ', 0), __os << __e; return __os; } #ifdef __SIZEOF_INT128__ /** * @brief Stream insertion operator for __int128_t. * * @param __os Output Stream * @param __x 128-bit integer * @return Reference to __os. */ template <class _Os> ostream_ref<_Os> operator<<(_Os &__os, __int128_t __x) { if (!__x) return __os << '0'; if (__x < 0) __os << '-'; char __s[40], *__p = __s; while (__x) { auto __d = __x % 10; *__p++ = '0' + (__x < 0 ? -__d : __d); __x /= 10; } *__p = 0; for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p; return __os << __s; } /** * @brief Stream insertion operator for __uint128_t. * * @param __os Output Stream * @param __x 128-bit unsigned integer * @return Reference to __os. */ template <class _Os> ostream_ref<_Os> operator<<(_Os &__os, __uint128_t __x) { if (!__x) return __os << '0'; char __s[40], *__p = __s; while (__x) *__p++ = '0' + __x % 10, __x /= 10; *__p = 0; for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p; return __os << __s; } #endif } // namespace workspace #line 9 "other/y.cc" namespace workspace { using mint = modint<998244353>; void main() { // start here! std::cin.tie(0)->sync_with_stdio(0); size_t n, m; std::cin >> n >> m; std::queue<rational<polynomial<mint>>> q; while (n--) { int a; std::cin >> a; q.push({{1}, {1, -a}}); } while (q.size() > 1) { auto t = q.front(); q.pop(); q.emplace(t += q.front()); q.pop(); } auto& [a, b] = q.back(); a *= b.inv(m + 1); for (size_t i = 1; i <= m; ++i) { if (i > 1) std::cout << ' '; if (a.size() > i) std::cout << a[i]; else std::cout << '0'; } std::cout << '\n'; } } // namespace workspace int main() { workspace::main(); }