結果
| 問題 | 
                            No.1670 Many Gacha
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2021-03-04 02:36:30 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                TLE
                                 
                             
                            
                            (最新)
                                AC
                                 
                             
                            (最初)
                            
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 2,096 bytes | 
| コンパイル時間 | 306 ms | 
| コンパイル使用メモリ | 82,460 KB | 
| 実行使用メモリ | 945,960 KB | 
| 最終ジャッジ日時 | 2024-12-15 08:41:18 | 
| 合計ジャッジ時間 | 81,947 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 6 TLE * 24 MLE * 4 | 
ソースコード
def cmb(n, r, mod):#コンビネーションの高速計算 
    if ( r<0 or r>n ):
        return 0
    r = min(r, n-r)
    return (g1[n] * g2[r] % mod) * g2[n-r] % mod
mod = 998244353#出力の制限
N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inverse = [1]*(N+1) #逆元テーブル計算用テーブル
for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inverse[i]=( ( -inverse[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inverse[i]) % mod )
inverse[0]=0
import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import log,gcd
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
def solve(N,M,A):
    A = [0] + A
    B = [0 for i in range(N+1)]
    for i in range(M+1):
        for j in range(A[i]+1,N+1):
            B[j] = i
    dp_res = [[0 for j in range(N+2)] for i in range(N+1)]
    dp_det_p = [[0 for j in range(N+2)] for i in range(N+1)]
    for i in range(1,N+1):
        n = B[i]
        for j in range(A[n],-1,-1):
            if i!=A[n]+1:
                dp_res[i][j] = (A[n+1] + (A[n]-j) * dp_res[i][j+1] + (i-A[n]) * dp_res[i-1][j]) % mod
                dp_res[i][j] *= inverse[i-j]
                dp_res[i][j] %= mod
            else:
                dp_res[i][j] = (A[n+1] + (A[n]-j) * dp_res[i][j+1] + dp_det_p[i-1][j]) % mod
                dp_res[i][j] *= inverse[i-j]
                dp_res[i][j] %= mod
        if i==A[n+1]:
            for j in range(i+1):
                inv = (g2[i] * g1[j] % mod) * g1[i-j] % mod
                for k in range(i-A[n]):
                    dp_det_p[i][j] += ((cmb(i-A[n],k,mod) * cmb(A[n],j-k,mod) % mod) * dp_res[i-k][j-k] % mod) * inv % mod
                    dp_det_p[i][j] %= mod
                dp_det_p[i][j] += (cmb(A[n],j-(i-A[n]),mod) * dp_det_p[A[n]][j-(i-A[n])] % mod) * inv % mod
                dp_det_p[i][j] %= mod
    return dp_res[N][0]
N,M = mi()
A = li()
print(solve(N,M,A) % mod)