結果
問題 | No.1195 数え上げを愛したい(文字列編) |
ユーザー | e869120 |
提出日時 | 2021-03-05 19:52:35 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,844 ms / 3,000 ms |
コード長 | 9,015 bytes |
コンパイル時間 | 1,042 ms |
コンパイル使用メモリ | 85,724 KB |
実行使用メモリ | 31,456 KB |
最終ジャッジ日時 | 2024-10-06 22:16:29 |
合計ジャッジ時間 | 42,011 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2,821 ms
31,292 KB |
testcase_01 | AC | 2,831 ms
31,288 KB |
testcase_02 | AC | 2,844 ms
31,284 KB |
testcase_03 | AC | 396 ms
14,196 KB |
testcase_04 | AC | 452 ms
14,904 KB |
testcase_05 | AC | 515 ms
25,956 KB |
testcase_06 | AC | 209 ms
8,064 KB |
testcase_07 | AC | 208 ms
8,064 KB |
testcase_08 | AC | 580 ms
11,596 KB |
testcase_09 | AC | 2,663 ms
31,456 KB |
testcase_10 | AC | 1,520 ms
20,824 KB |
testcase_11 | AC | 2,378 ms
27,112 KB |
testcase_12 | AC | 2,159 ms
23,124 KB |
testcase_13 | AC | 1,930 ms
22,036 KB |
testcase_14 | AC | 1,175 ms
17,532 KB |
testcase_15 | AC | 1,459 ms
20,872 KB |
testcase_16 | AC | 1,287 ms
19,640 KB |
testcase_17 | AC | 607 ms
11,660 KB |
testcase_18 | AC | 2,203 ms
22,984 KB |
testcase_19 | AC | 2,145 ms
22,880 KB |
testcase_20 | AC | 1,961 ms
22,052 KB |
testcase_21 | AC | 2,388 ms
27,064 KB |
testcase_22 | AC | 1,874 ms
21,952 KB |
testcase_23 | AC | 208 ms
8,136 KB |
testcase_24 | AC | 208 ms
8,192 KB |
testcase_25 | AC | 207 ms
8,084 KB |
ソースコード
#ifndef CLASS_FAST_MODINT #define CLASS_FAST_MODINT #include <vector> #include <cstdint> using singlebit = uint32_t; using doublebit = uint64_t; static constexpr int digit_level = 32; static constexpr singlebit find_inv(singlebit n, int d = 6, singlebit x = 1) { return d == 0 ? x : find_inv(n, d - 1, x * (2 - x * n)); } template <singlebit mod> class fast_modint { // Fast Modulo Integer, Assertion: mod < 2^(bits of singlebit - 1) and mod is prime private: singlebit n; static constexpr singlebit r2 = (((doublebit(1) << digit_level) % mod) << digit_level) % mod; static constexpr singlebit ninv = singlebit(-1) * find_inv(mod); singlebit reduce(doublebit x) const { singlebit res = (x + doublebit(singlebit(x) * ninv) * mod) >> digit_level; return res < mod ? res : res - mod; } public: fast_modint() : n(0) {}; fast_modint(singlebit n_) { n = reduce(doublebit(n_) * r2); }; static constexpr singlebit get_mod() { return mod; } singlebit get() const { return reduce(n); } bool operator==(const fast_modint& x) const { return n == x.n; } bool operator!=(const fast_modint& x) const { return n != x.n; } fast_modint& operator+=(const fast_modint& x) { n += x.n; n -= (n < mod ? 0 : mod); return *this; } fast_modint& operator-=(const fast_modint& x) { n += mod - x.n; n -= (n < mod ? 0 : mod); return *this; } fast_modint& operator*=(const fast_modint& x) { n = reduce(doublebit(n) * x.n); return *this; } fast_modint operator+(const fast_modint& x) const { return fast_modint(*this) += x; } fast_modint operator-(const fast_modint& x) const { return fast_modint(*this) -= x; } fast_modint operator*(const fast_modint& x) const { return fast_modint(*this) *= x; } fast_modint inv() const { return binpow(mod - 2); } fast_modint binpow(singlebit b) const { fast_modint ans(1), cur(*this); while (b > 0) { if (b & 1) ans *= cur; cur *= cur; b >>= 1; } return ans; } }; template<typename modulo> std::vector<modulo> get_modvector(std::vector<int> v) { std::vector<modulo> ans(v.size()); for (int i = 0; i < v.size(); ++i) { ans[i] = modulo(v[i]); } return ans; } #endif // CLASS_FAST_MODINT #ifndef CLASS_POLYNOMIAL_NTT #define CLASS_POLYNOMIAL_NTT template<singlebit mod, singlebit depth, singlebit primroot> class polynomial_ntt { public: using modulo = fast_modint<mod>; static void fourier_transform(std::vector<modulo>& v, bool inverse) { std::size_t s = v.size(); for (std::size_t i = 0, j = 1; j < s - 1; ++j) { for (std::size_t k = s >> 1; k > (i ^= k); k >>= 1); if (i < j) std::swap(v[i], v[j]); } std::size_t sc = 0, sz = 1; while (sz < s) sz *= 2, ++sc; modulo root = modulo(primroot).binpow((mod - 1) >> sc); std::vector<modulo> pw(s + 1); pw[0] = 1; for (std::size_t i = 1; i <= s; i++) pw[i] = pw[i - 1] * root; std::size_t qs = s; for (std::size_t b = 1; b < s; b <<= 1) { qs >>= 1; for (std::size_t i = 0; i < s; i += b * 2) { for (std::size_t j = i; j < i + b; ++j) { modulo delta = pw[(inverse ? b * 2 - j + i : j - i) * qs] * v[j + b]; v[j + b] = v[j] - delta; v[j] += delta; } } } if (!inverse) return; modulo powinv = modulo((mod + 1) / 2).binpow(sc); for (std::size_t i = 0; i < s; ++i) { v[i] = v[i] * powinv; } } static std::vector<modulo> convolve(std::vector<modulo> v1, std::vector<modulo> v2) { std::size_t s1 = v1.size(), s2 = v2.size(), s = 1; while (s < s1 || s < s2) s *= 2; v1.resize(s * 2); fourier_transform(v1, false); v2.resize(s * 2); fourier_transform(v2, false); for (singlebit i = 0; i < s * 2; ++i) v1[i] *= v2[i]; fourier_transform(v1, true); v1.resize(s1 + s2 - 1); return v1; } }; #endif // CLASS_POLYNOMIAL_NTT #ifndef CLASS_POLYNOMIAL_MOD #define CLASS_POLYNOMIAL_MOD #include <algorithm> template<const singlebit mod, const singlebit depth, const singlebit primroot> class polynomial_mod { public: using modulo = fast_modint<mod>; using ntt = polynomial_ntt<mod, depth, primroot>; protected: std::size_t sz; std::vector<modulo> a; public: explicit polynomial_mod() : sz(1), a(std::vector<modulo>({ modulo() })) {}; explicit polynomial_mod(std::size_t sz_) : sz(sz_), a(std::vector<modulo>(sz_, modulo())) {}; explicit polynomial_mod(std::vector<modulo> a_) : sz(a_.size()), a(a_) {}; polynomial_mod& operator=(const polynomial_mod& p) { sz = p.sz; a = p.a; return (*this); } std::size_t size() const { return sz; } std::size_t degree() const { return sz - 1; } modulo operator[](std::size_t idx) const { return a[idx]; } modulo& operator[](std::size_t idx) { return a[idx]; } bool operator==(const polynomial_mod& p) const { for (std::size_t i = 0; i < sz || i < p.sz; ++i) { if ((i < sz ? a[i] : modulo(0)) != (i < p.sz ? p.a[i] : modulo(0))) { return false; } } return true; } bool operator!=(const polynomial_mod& p) const { return !(operator==(p)); } polynomial_mod resize_transform(std::size_t d) const { // Resize polynomial to d: in other words, f(x) := f(x) mod x^d polynomial_mod ans(*this); ans.sz = d; ans.a.resize(d, modulo(0)); return ans; } polynomial_mod star_transform() const { // f*(x) = x^degree * f(1/x) polynomial_mod ans(*this); std::reverse(ans.a.begin(), ans.a.end()); return ans; } polynomial_mod inverse(std::size_t d) const { // Find g(x) where g(x) * f(x) = 1 (mod x^d) polynomial_mod ans(std::vector<modulo>({ a[0].inv() })); while (ans.size() < d) { polynomial_mod nxt({ modulo(2) }); nxt -= ans * resize_transform(ans.size() * 2); nxt *= ans; ans = nxt.resize_transform(ans.size() * 2); } ans = ans.resize_transform(d); return ans; } polynomial_mod& operator+=(const polynomial_mod& p) { sz = std::max(sz, p.sz); a.resize(sz); for (std::size_t i = 0; i < sz; ++i) a[i] += p.a[i]; return (*this); } polynomial_mod& operator-=(const polynomial_mod& p) { sz = std::max(sz, p.sz); a.resize(sz); for (std::size_t i = 0; i < sz; ++i) a[i] -= p.a[i]; return (*this); } polynomial_mod& operator*=(const polynomial_mod& p) { a = ntt::convolve(a, p.a); sz += p.sz - 1; return (*this); } polynomial_mod& operator/=(const polynomial_mod& p) { // Expected Time: 4 * multiply(p) std::size_t dn = degree(), dm = p.degree(); if (dn < dm) (*this) = polynomial_mod(); else { polynomial_mod gstar = p.star_transform().inverse(dn - dm + 1); polynomial_mod qstar = (gstar * (*this).star_transform()).resize_transform(dn - dm + 1); (*this) = qstar.star_transform(); } return (*this); } polynomial_mod& operator%=(const polynomial_mod& p) { // Expected Time: 5 * multiply(p) (*this) -= polynomial_mod(*this) / p * p; (*this) = (*this).resize_transform(p.size() - 1); return (*this); } polynomial_mod operator+() const { return polynomial_mod(*this); } polynomial_mod operator-() const { return polynomial_mod() - polynomial_mod(*this); } polynomial_mod operator+(const polynomial_mod& p) const { return polynomial_mod(*this) += p; } polynomial_mod operator-(const polynomial_mod& p) const { return polynomial_mod(*this) -= p; } polynomial_mod operator*(const polynomial_mod& p) const { return polynomial_mod(*this) *= p; } polynomial_mod operator/(const polynomial_mod& p) const { return polynomial_mod(*this) /= p; } polynomial_mod operator%(const polynomial_mod& p) const { return polynomial_mod(*this) %= p; } }; #endif // CLASS_POLYNOMIAL_MOD #include <iostream> #include <algorithm> using namespace std; #pragma warning (disable: 4996) using poly = polynomial_mod<998244353, 23, 3>; using modulo = poly::modulo; vector<long long> calc(vector<long long> v1, vector<long long> v2) { poly a(v1.size()), b(v2.size()); for (int i = 0; i < v1.size(); i++) a[i] = v1[i]; for (int i = 0; i < v2.size(); i++) b[i] = v2[i]; poly c = a * b; vector<long long> ans; for (int i = 0; i < v1.size() + v2.size() - 1; i++) ans.push_back(c[i].get()); return ans; } long long modpow(long long a, long long b, long long m) { long long p = 1, q = a; for (int i = 0; i < 31; i++) { if ((b & (1 << i)) != 0) { p *= q; p %= m; } q *= q; q %= m; } return p; } long long Div(long long a, long long b, long long m) { return (a * modpow(b, m - 2, m)) % m; } string S; int cnt[27]; long long mod = 998244353; long long fact[300009]; long long factinv[300009]; void init() { fact[0] = 1; for (int i = 1; i <= 300000; i++) fact[i] = (1LL * i * fact[i - 1]) % mod; for (int i = 0; i <= 300000; i++) factinv[i] = Div(1, fact[i], mod); } int main() { init(); cin >> S; for (int i = 0; i < S.size(); i++) cnt[S[i] - 'a'] += 1; sort(cnt, cnt + 26); vector<long long> X; X.push_back(1); for (int i = 0; i < 26; i++) { vector<long long> Y(cnt[i] + 1, 0); for (int j = 0; j <= cnt[i]; j++) Y[j] = factinv[j]; X = calc(X, Y); } long long Answer = 0; for (int i = 1; i < X.size(); i++) { long long t1 = X[i]; long long t2 = fact[i]; Answer += t1 * t2; Answer %= mod; } cout << Answer << endl; return 0; }