結果

問題 No.1417 100の倍数かつ正整数(2)
ユーザー LayCurseLayCurse
提出日時 2021-03-05 21:30:05
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 24 ms / 3,000 ms
コード長 9,226 bytes
コンパイル時間 2,679 ms
コンパイル使用メモリ 219,292 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-07 00:36:33
合計ジャッジ時間 3,955 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
testcase_28 AC 2 ms
5,248 KB
testcase_29 AC 2 ms
5,248 KB
testcase_30 AC 3 ms
5,248 KB
testcase_31 AC 3 ms
5,248 KB
testcase_32 AC 5 ms
5,248 KB
testcase_33 AC 8 ms
5,248 KB
testcase_34 AC 17 ms
5,248 KB
testcase_35 AC 18 ms
5,248 KB
testcase_36 AC 17 ms
5,248 KB
testcase_37 AC 24 ms
5,248 KB
testcase_38 AC 11 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
template<class S, class T> inline S min_L(S a,T b){
  return a<=b?a:b;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(char &c){
  int i;
  for(;;){
    i = my_getchar_unlocked();
    if(i!=' '&&i!='\n'&&i!='\r'&&i!='\t'&&i!=EOF){
      break;
    }
  }
  c = i;
}
inline int rd(char c[]){
  int i;
  int sz = 0;
  for(;;){
    i = my_getchar_unlocked();
    if(i!=' '&&i!='\n'&&i!='\r'&&i!='\t'&&i!=EOF){
      break;
    }
  }
  c[sz++] = i;
  for(;;){
    i = my_getchar_unlocked();
    if(i==' '||i=='\n'||i=='\r'||i=='\t'||i==EOF){
      break;
    }
    c[sz++] = i;
  }
  c[sz]='\0';
  return sz;
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
char A[100000+2];
int N;
Modint dp[2][2][2][3][3];
Modint nxt[2][2][2][3][3];
int main(){
  int d, i, x;
  int nz;
  int nx;
  int ny;
  int ni;
  int nj;
  Modint res = 0;
  N = rd(A);
  for(i=(0);i<(N);i++){
    A[i] -= '0';
  }
  dp[0][0][0][0][0] = 1;
  for(d=(0);d<(N);d++){
    int z;
    for(z=(0);z<(2);z++){
      int x;
      for(x=(0);x<(2);x++){
        int y;
        for(y=(0);y<(2);y++){
          for(i=(0);i<(3);i++){
            int j;
            for(j=(0);j<(3);j++){
              nxt[z][x][y][i][j] = 0;
            }
          }
        }
      }
    }
    for(z=(0);z<(2);z++){
      int x;
      for(x=(0);x<(2);x++){
        int y;
        for(y=(0);y<(2);y++){
          for(i=(0);i<(3);i++){
            int j;
            for(j=(0);j<(3);j++){
              int k;
              for(k=(0);k<(10);k++){
                auto Q5rsz4fz = ((z));
                auto GgkpftXM = (( x));
                auto gEg5UqEA = (( y));
                auto qSsg05KM = (( i));
                auto Hjfu7Vx7 = (( j));
                nz=Q5rsz4fz;
                nx=GgkpftXM;
                ny=gEg5UqEA;
                ni=qSsg05KM;
                nj=Hjfu7Vx7;
                if(z == 1 && k == 0){
                  continue;
                }
                if(k){
                  nz = 1;
                }
                if(ny == 0 && k > A[d]){
                  continue;
                }
                if(k < A[d]){
                  ny = 1;
                }
                if(k && k%2==0){
                  ni =min_L(2, ni+1);
                }
                if(k && k%4==0){
                  ni =min_L(2, ni+1);
                }
                if(k && k%5==0){
                  nj =min_L(2, nj+1);
                }
                nxt[nz][nx][ny][ni][nj] += dp[z][x][y][i][j];
              }
            }
          }
        }
      }
    }
    for(z=(0);z<(2);z++){
      int x;
      for(x=(0);x<(2);x++){
        int y;
        for(y=(0);y<(2);y++){
          for(i=(0);i<(3);i++){
            int j;
            for(j=(0);j<(3);j++){
              dp[z][x][y][i][j] = nxt[z][x][y][i][j];
            }
          }
        }
      }
    }
  }
  for(x=(0);x<(2);x++){
    int y;
    for(y=(0);y<(2);y++){
      res += dp[1][x][y][2][2];
    }
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay version 20210227-1

// --- original code ---
// char A[1d5+2]; int N;
// Modint dp[2][2][2][3][3], nxt[2][2][2][3][3];
// 
// {
//   int nz, nx, ny, ni, nj;
//   Modint res = 0;
//   rd(A@N);
//   rep(i,N) A[i] -= '0';
//   dp[0][0][0][0][0] = 1;
//   rep(d,N){
//     rep(z,2) rep(x,2) rep(y,2) rep(i,3) rep(j,3) nxt[z][x][y][i][j] = 0;
//     rep(z,2) rep(x,2) rep(y,2) rep(i,3) rep(j,3) rep(k,10){
//       (nz, nx, ny, ni, nj) = (z, x, y, i, j);
//       if(z == 1 && k == 0) continue;
//       if(k) nz = 1;
//       // if(nx == 0 && k < A[d]) continue;
//       // if(k > A[d]) nx = 1;
//       if(ny == 0 && k > A[d]) continue;
//       if(k < A[d]) ny = 1;
//       if(k && k%2==0) ni = min(2, ni+1);
//       if(k && k%4==0) ni = min(2, ni+1);
//       if(k && k%5==0) nj = min(2, nj+1);
//       nxt[nz][nx][ny][ni][nj] += dp[z][x][y][i][j];
//     }
//     rep(z,2) rep(x,2) rep(y,2) rep(i,3) rep(j,3) dp[z][x][y][i][j] = nxt[z][x][y][i][j];
//     // rep(z,2) rep(x,2) rep(y,2) rep(i,3) rep(j,3) if(dp[z][x][y][i][j]) wt(d,":",z,x,y,i,j,":",dp[z][x][y][i][j]);
//   }
//   rep(x,2) rep(y,2) res += dp[1][x][y][2][2];
//   wt(res);
// }
0