結果

問題 No.1417 100の倍数かつ正整数(2)
ユーザー tokusakuraitokusakurai
提出日時 2021-03-05 21:37:00
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 11 ms / 3,000 ms
コード長 3,832 bytes
コンパイル時間 1,921 ms
コンパイル使用メモリ 202,488 KB
最終ジャッジ日時 2025-01-19 10:43:42
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define each(e, v) for(auto &e: v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};
struct io_setup{
io_setup(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
template<int mod>
struct Mod_Int{
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
Mod_Int &operator += (const Mod_Int &p){
if((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator -= (const Mod_Int &p){
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator *= (const Mod_Int &p){
x = (int) (1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator /= (const Mod_Int &p){
*this *= p.inverse();
return *this;
}
Mod_Int &operator ++ () {return *this += Mod_Int(1);}
Mod_Int operator ++ (int){
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator -- () {return *this -= Mod_Int(1);}
Mod_Int operator -- (int){
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator - () const {return Mod_Int(-x);}
Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;}
Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;}
Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;}
Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;}
bool operator == (const Mod_Int &p) const {return x == p.x;}
bool operator != (const Mod_Int &p) const {return x != p.x;}
Mod_Int inverse() const{
assert(*this != Mod_Int(0));
return pow(mod-2);
}
Mod_Int pow(long long k) const{
Mod_Int now = *this, ret = 1;
for(; k > 0; k >>= 1, now *= now){
if(k&1) ret *= now;
}
return ret;
}
friend ostream &operator << (ostream &os, const Mod_Int &p){
return os << p.x;
}
friend istream &operator >> (istream &is, Mod_Int &p){
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
int main(){
string S; cin >> S;
int N = sz(S);
vector<vector<vector<mint>>> dp1(N+1, vector<vector<mint>>(3, vector<mint>(3, 0)));
vector<vector<vector<mint>>> dp2(N+1, vector<vector<mint>>(3, vector<mint>(3, 0)));
dp1[0][0][0] = 1;
vector<int> tw(10, 0), fi(10, 0);
rep2(i, 1, 9){
int memo = i;
while(memo%2 == 0) tw[i]++, memo /= 2;
while(memo%5 == 0) fi[i]++, memo/= 5;
}
rep(i, N){
int x = S[i]-'0';
rep(j, 3) rep(k, 3){
rep2(l, 1, 9){
int nj = min(j+tw[l], 2), nk = min(k+fi[l], 2);
if(l < x) dp2[i+1][nj][nk] += dp1[i][j][k];
if(l == x) dp1[i+1][nj][nk] += dp1[i][j][k];
dp2[i+1][nj][nk] += dp2[i][j][k];
}
}
dp2[i+1][0][0]++;
}
cout << dp1[N][2][2]+dp2[N][2][2] << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0