結果
問題 | No.1417 100の倍数かつ正整数(2) |
ユーザー | yuji9511 |
提出日時 | 2021-03-05 22:01:16 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 19 ms / 3,000 ms |
コード長 | 9,920 bytes |
コンパイル時間 | 2,149 ms |
コンパイル使用メモリ | 208,604 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-07 01:53:39 |
合計ジャッジ時間 | 3,387 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 4 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 4 ms
5,248 KB |
testcase_10 | AC | 3 ms
5,248 KB |
testcase_11 | AC | 3 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 3 ms
5,248 KB |
testcase_14 | AC | 3 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 4 ms
5,248 KB |
testcase_17 | AC | 3 ms
5,248 KB |
testcase_18 | AC | 4 ms
5,248 KB |
testcase_19 | AC | 3 ms
5,248 KB |
testcase_20 | AC | 3 ms
5,248 KB |
testcase_21 | AC | 3 ms
5,248 KB |
testcase_22 | AC | 4 ms
5,248 KB |
testcase_23 | AC | 3 ms
5,248 KB |
testcase_24 | AC | 3 ms
5,248 KB |
testcase_25 | AC | 4 ms
5,248 KB |
testcase_26 | AC | 3 ms
5,248 KB |
testcase_27 | AC | 3 ms
5,248 KB |
testcase_28 | AC | 4 ms
5,248 KB |
testcase_29 | AC | 3 ms
5,248 KB |
testcase_30 | AC | 5 ms
5,248 KB |
testcase_31 | AC | 5 ms
5,248 KB |
testcase_32 | AC | 6 ms
5,248 KB |
testcase_33 | AC | 9 ms
5,248 KB |
testcase_34 | AC | 17 ms
5,248 KB |
testcase_35 | AC | 18 ms
5,248 KB |
testcase_36 | AC | 18 ms
5,248 KB |
testcase_37 | AC | 19 ms
5,248 KB |
testcase_38 | AC | 15 ms
5,248 KB |
ソースコード
/*** author: yuji9511 ***/ #include <bits/stdc++.h> // #include <atcoder/all> // using namespace atcoder; using namespace std; using ll = long long; using lpair = pair<ll, ll>; using vll = vector<ll>; const ll MOD = 1e9+7; const ll INF = 1e18; #define rep(i,m,n) for(ll i=(m);i<(n);i++) #define rrep(i,m,n) for(ll i=(m);i>=(n);i--) ostream& operator<<(ostream& os, lpair& h){ os << "(" << h.first << ", " << h.second << ")"; return os;} #define printa(x,n) for(ll i=0;i<n;i++){cout<<(x[i])<<" \n"[i==n-1];}; void print() {} template <class H,class... T> void print(H&& h, T&&... t){cout<<h<<" \n"[sizeof...(t)==0];print(forward<T>(t)...);} template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; } namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; using mint = static_modint<MOD>; void solve(){ string sN; cin >> sN; mint dp[10010][2][2][3][3] = {}; dp[0][0][0][0][0] = 1; ll keta = sN.size(); rep(i,0,keta){ ll D = sN[i] - '0'; rep(mask,0,2){ ll end = (mask ? 10 : D+1); rep(z,0,2){ rep(d,0,end){ rep(j,0,3){ rep(k,0,3){ if(d == 2){ dp[i+1][mask || d < D][1][min(2LL, j+1)][k] += dp[i][mask][z][j][k]; }else if(d == 4){ dp[i+1][mask || d < D][1][min(2LL, j+2)][k] += dp[i][mask][z][j][k]; }else if(d == 8){ dp[i+1][mask || d < D][1][min(2LL, j+3)][k] += dp[i][mask][z][j][k]; }else if(d == 5){ dp[i+1][mask || d < D][1][j][min(2LL, k+1)] += dp[i][mask][z][j][k]; }else if(d == 6){ dp[i+1][mask || d < D][1][min(2LL, j+1)][k] += dp[i][mask][z][j][k]; }else if(d == 0){ if(z == 0){ dp[i+1][mask || d < D][0][j][k] += dp[i][mask][z][j][k]; }else{ } }else{ dp[i+1][mask || d < D][1][j][k] += dp[i][mask][z][j][k]; } } } } } } } // print(dp[1][0][2][0]); // print(dp[2][0][2][1]); mint ans = dp[keta][0][1][2][2] + dp[keta][1][1][2][2]; print(ans.val()); } int main(){ cin.tie(0); ios::sync_with_stdio(false); solve(); }