結果

問題 No.1419 Power Moves
ユーザー haruki_Kharuki_K
提出日時 2021-03-05 22:41:19
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 34 ms / 2,000 ms
コード長 12,742 bytes
コンパイル時間 2,121 ms
コンパイル使用メモリ 208,908 KB
最終ジャッジ日時 2025-01-19 11:36:25
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// >>> TEMPLATES
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
#define int ll
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)
#define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--)
#define rep1R(i, n) for (int i = (int)(n); i >= 1; i--)
#define loop(i, a, B) for (int i = a; i B; i++)
#define loopR(i, a, B) for (int i = a; i B; i--)
#define all(x) begin(x), end(x)
#define allR(x) rbegin(x), rend(x)
#define rng(x, l, r) begin(x) + (l), begin(x) + (r)
#define pb push_back
#define eb emplace_back
#define fst first
#define snd second
template <class A, class B> constexpr auto mp(A &&a, B &&b) { return make_pair(forward<A>(a), forward<B>(b)); }
template <class... T> constexpr auto mt(T&&... x) { return make_tuple(forward<T>(x)...); }
template <class Int> auto constexpr inf_ = numeric_limits<Int>::max()/2-1;
auto constexpr INF32 = inf_<int32_t>;
auto constexpr INF64 = inf_<int64_t>;
auto constexpr INF = inf_<int>;
#ifdef LOCAL
#include "debug.hpp"
#else
#define dump(...) (void)(0)
#define say(x) (void)(0)
#define debug if (0)
#endif
template <class T, class Comp> struct pque : priority_queue<T, vector<T>, Comp> { vector<T> &data() { return this->c; } void clear() { this->c.clear
    (); } };
template <class T> using pque_max = pque<T, less<T>>;
template <class T> using pque_min = pque<T, greater<T>>;
template <class T, class = typename T::iterator, enable_if_t<!is_same<T, string>::value, int> = 0>
ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, size_t N, enable_if_t<!is_same<T, char>::value, int> = 0>
ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, class = decltype(begin(declval<T&>())), class = typename enable_if<!is_same<T, string>::value>::type>
istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; }
template <class T, class S> ostream& operator<<(ostream& os, pair<T, S> const& p) { return os << p.first << " " << p.second; }
template <class T, class S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; }
struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup;
template <class F> struct FixPoint : private F {
constexpr FixPoint(F&& f) : F(forward<F>(f)) {}
template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); }
};
struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } };
#define MFP MakeFixPoint()|
#define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__)
template <class T, size_t d> struct vec_impl {
using type = vector<typename vec_impl<T, d-1>::type>;
template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T, d-1>::make_v(forward<U>(x)...)); }
};
template <class T> struct vec_impl<T, 0> { using type = T; static type make_v(T const& x = {}) { return x; } };
template <class T, size_t d = 1> using vec = typename vec_impl<T, d>::type;
template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T, d>::make_v(forward<Args>(args)...); }
template <class T> void quit(T const& x) { cout << x << endl; exit(0); }
template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > y) { x = y; return true; } return false; }
template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < y) { x = y; return true; } return false; }
template <class It> constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits<It>::value_type{}); }
template <class T> int sz(T const& x) { return x.size(); }
template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); }
template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); }
constexpr int64_t mod(int64_t x, int64_t m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; }
constexpr int64_t div_floor(int64_t x, int64_t y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); }
constexpr int64_t div_ceil(int64_t x, int64_t y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); }
constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 };
constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 };
constexpr int popcnt(ll x) { return __builtin_popcountll(x); }
mt19937_64 seed_{random_device{}()};
template <class Int> Int rand(Int a, Int b) { return uniform_int_distribution<Int>(a, b)(seed_); }
i64 irand(i64 a, i64 b) { return rand<i64>(a, b); } // [a, b]
u64 urand(u64 a, u64 b) { return rand<u64>(a, b); } //
template <class It> void shuffle(It l, It r) { shuffle(l, r, seed_); }
vector<int> &operator--(vector<int> &v) { for (int &x : v) --x; return v; }
vector<int> &operator++(vector<int> &v) { for (int &x : v) ++x; return v; }
// <<<
// >>> modint
template <uint32_t md>
class modint {
static_assert(md < (1u<<31), "");
using M = modint;
using i64 = int64_t;
uint32_t x;
public:
static constexpr uint32_t mod = md;
constexpr modint(i64 x = 0) : x((x%=md) < 0 ? x+md : x) { }
constexpr i64 val() const { return x; }
constexpr explicit operator i64() const { return x; }
constexpr bool operator==(M r) const { return x == r.x; }
constexpr bool operator!=(M r) const { return x != r.x; }
constexpr M operator+() const { return *this; }
constexpr M operator-() const { return M()-*this; }
constexpr M& operator+=(M r) { x += r.x; x = (x < md ? x : x-md); return *this; }
constexpr M& operator-=(M r) { x += md-r.x; x = (x < md ? x : x-md); return *this; }
constexpr M& operator*=(M r) { x = (uint64_t(x)*r.x)%md; return *this; }
constexpr M& operator/=(M r) { return *this *= r.inv(); }
constexpr M operator+(M r) const { return M(*this) += r; }
constexpr M operator-(M r) const { return M(*this) -= r; }
constexpr M operator*(M r) const { return M(*this) *= r; }
constexpr M operator/(M r) const { return M(*this) /= r; }
friend constexpr M operator+(i64 x, M y) { return M(x)+y; }
friend constexpr M operator-(i64 x, M y) { return M(x)-y; }
friend constexpr M operator*(i64 x, M y) { return M(x)*y; }
friend constexpr M operator/(i64 x, M y) { return M(x)/y; }
constexpr M inv() const { assert(x > 0); return pow(md-2); }
constexpr M pow(i64 n) const {
assert(not (x == 0 and n == 0));
if (n < 0) return inv().pow(-n);
M v = *this, r = 1;
for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v;
return r;
}
#ifdef LOCAL
friend string to_s(M r) { return to_s(r.val(), mod); }
#endif
friend ostream& operator<<(ostream& os, M r) { return os << r.val(); }
friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; }
};
// <<<
//constexpr int64_t MOD = 998244353;
constexpr int64_t MOD = 1e9+7;
using mint = modint<MOD>;
mint parity(int n) { return n & 1 ? -1 : +1; }
// >>> mod table
template <class mint> struct ModTable {
vector<mint> fact = { 1, 1 }, finv = { 1, 1 };
void calc(int n) {
const int old = fact.size();
if (n < old) return;
n += 1000;
fact.resize(n+1);
finv.resize(n+1);
for (auto i = old; i <= n; i++) fact[i] = fact[i-1] * i;
finv[n] = mint(1) / fact[n];
for (auto i = n-1; i >= old; i--) finv[i] = finv[i+1] * (i+1);
}
};
ModTable<mint> mod_tab;
mint fact(int n) {
assert(0 <= n);
return mod_tab.calc(n), mod_tab.fact[n];
}
mint finv(int n) {
assert(0 <= n);
return mod_tab.calc(n), mod_tab.finv[n];
}
mint comb(int n, int k) {
if (n < 0 || k < 0 || n < k) return 0;
mod_tab.calc(n);
return mod_tab.fact[n] * mod_tab.finv[k] * mod_tab.finv[n-k];
}
mint perm(int n, int k) {
assert(k >= 0); assert(n >= k);
mod_tab.calc(n);
return mod_tab.fact[n] * mod_tab.finv[n-k];
}
// <<<
// >>> runtime modint
template <int id> class runtime_modint {
using u32 = uint32_t;
using i32 = int32_t;
using i64 = int64_t;
using M = runtime_modint;
u32 x;
public:
static u32& mod() { static u32 mod = 0; return mod; }
runtime_modint(i64 x = 0)
: x((assert(mod() > 0), ((x %= mod()) < 0 ? x+mod() : x))) { }
i64 val() const { return x; }
bool operator==(M const& r) const { return x == r.x; }
bool operator!=(M const& r) const { return x != r.x; }
M operator+() const { return *this; }
M operator-() const { return M()-*this; }
M& operator+=(M const& r) { i64 t = i64(x) + r.x; if (t >= mod()) t -= mod(); x = t; return *this; }
M& operator-=(M const& r) { i64 t = i64(x) + mod()-r.x; if (t >= mod()) t -= mod(); x = t; return *this; }
M& operator*=(M const& r) { x = uint64_t(x)*r.x%mod(); return *this; }
M& operator/=(M const& r) { return *this *= r.inv(); }
M operator+(M r) const { return M(*this) += r; }
M operator-(M r) const { return M(*this) -= r; }
M operator*(M r) const { return M(*this) *= r; }
M operator/(M r) const { return M(*this) /= r; }
friend M operator+(i64 x, M y) { return M(x)+y; }
friend M operator-(i64 x, M y) { return M(x)-y; }
friend M operator*(i64 x, M y) { return M(x)*y; }
friend M operator/(i64 x, M y) { return M(x)/y; }
M pow(i64 n) const { // 0^0 = 1
if (n < 0) return inv().pow(-n);
M v = *this, r = 1;
for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v;
return r;
}
M inv() const {
uint32_t a = x, b = mod();
int64_t u = 1, v = 0;
while (b) {
int64_t q = a / b;
swap(a -= q * b, b);
swap(u -= q * v, v);
}
assert(a == 1);
return u;
}
static i64 gen() { // assume mod():prime
if (mod() == 2) return 1;
assert(mod() >= 3);
for (int i = 2; i*i <= mod(); i++) assert(mod() % i != 0);
vector<int> ps;
int n = mod()-1;
for (int i = 2; i*i <= n; ++i) {
if (n % i) continue;
ps.push_back(i);
do n /= i; while (n % i == 0);
}
if (n > 1) ps.push_back(n);
n = mod()-1;
auto check = [&](M g) {
for (int p : ps) if (g.pow(n/p) == 1) return false;
return true;
};
for (int g = 2; g <= n; ++g) if (check(g)) return g;
return -1;
}
// return minimum k >= (allow_zero ? 0 : 1) s.t. this->pow(k) == y
// return -1 if not found
int log(M y, bool allow_zero = false) {
if (allow_zero and pow(0) == y) return 0;
auto x = *this;
M z = 1;
int k = 0;
while ((1u << k) < mod()) {
z *= x, k++;
if (z == y) return k;
}
u32 g = gcd(z.x, mod());
if (y.x % g != 0) return -1;
auto old_mod = mod();
mod() /= g, x.x %= mod(), y.x /= g, z.x /= g;
unordered_map<u32, u32> m;
int s = 0;
M w = 1;
for ( ; s*s < mod(); s++) m[(y*w).x] = s, w *= x;
while (k < mod()) {
z *= w, k += s;
if (m.count(z.x)) {
mod() = old_mod;
return k - m[z.x];
}
}
mod() = old_mod;
return -1;
}
#ifdef LOCAL
// friend string to_s(M r) { return to_s(r.val(), M::mod()); }
friend string to_s(M r) { return to_s(r.val()); }
#endif
friend ostream& operator<<(ostream& os, M r) { return os << r.val(); }
friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; }
};
// <<<
using mint2 = runtime_modint<-1>;
int32_t main() {
int n, k; cin >> n >> k;
vector<mint> ans(n);
if (n % 2 == 0) {
mint2::mod() = n/2;
int r = mint2(2).pow(k).val();
dump(r);
mint A = (mint(2).pow(k)-r)/(n/2);
for (int i = 0; i < n; i += 2) {
ans[i] = A + (i/2 < r);
}
rep (i, n) ans[i] /= mint(2).pow(k);
} else {
mint2::mod() = n;
int r = mint2(2).pow(k).val();
dump(r);
mint A = (mint(2).pow(k)-r)/n;
for (int i = 0; i < 2*n; i += 2) {
ans[i%n] = A + (i/2 < r);
}
rep (i, n) ans[i] /= mint(2).pow(k);
}
mint2::mod() = n;
int s = (-(mint2(2).pow(k)-1)).val();
rotate(ans.begin(), ans.begin() + (n-s), ans.end());
rep (i, n) cout << ans[i] << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0