結果
| 問題 |
No.1417 100の倍数かつ正整数(2)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-03-05 23:58:30 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 2,742 bytes |
| コンパイル時間 | 537 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 852,000 KB |
| 最終ジャッジ日時 | 2024-10-07 06:12:56 |
| 合計ジャッジ時間 | 8,829 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 31 MLE * 1 -- * 4 |
ソースコード
MOD = 10**9+7
class ModInt:
def __init__(self, x):
self.x = x % MOD
def __str__(self):
return str(self.x)
__repr__ = __str__
def __add__(self, other):
return (
ModInt(self.x + other.x) if isinstance(other, ModInt) else
ModInt(self.x + other)
)
def __sub__(self, other):
return (
ModInt(self.x - other.x) if isinstance(other, ModInt) else
ModInt(self.x - other)
)
def __mul__(self, other):
return (
ModInt(self.x * other.x) if isinstance(other, ModInt) else
ModInt(self.x * other)
)
def __truediv__(self, other):
return (
ModInt(
self.x * pow(other.x, MOD - 2, MOD)
) if isinstance(other, ModInt) else
ModInt(self.x * pow(other, MOD - 2, MOD))
)
__floordiv__ = __truediv__
def __pow__(self, other):
return (
ModInt(pow(self.x, other.x, MOD)) if isinstance(other, ModInt) else
ModInt(pow(self.x, other, MOD))
)
__radd__ = __add__
def __rsub__(self, other):
return (
ModInt(other.x - self.x) if isinstance(other, ModInt) else
ModInt(other - self.x)
)
__rmul__ = __mul__
def __rtruediv__(self, other):
return (
ModInt(
other.x * pow(self.x, MOD - 2, MOD)
) if isinstance(other, ModInt) else
ModInt(other * pow(self.x, MOD - 2, MOD))
)
def __rpow__(self, other):
return (
ModInt(pow(other.x, self.x, MOD)) if isinstance(other, ModInt) else
ModInt(pow(other, self.x, MOD))
)
N = list(map(int,list(input())))[::-1]
digit = len(N)
dp = [[[[0]*10 for _ in range(3)] for _ in range(3)] for _ in N+[0]]
dp[0][0][0] = [1]*10
for i in range(digit): #配るDP
for j in range(3): #2
for k in range(3): #5
for l in range(1,10):
dp[i+1][j][k][l] += dp[i+1][j][k][l-1]
dp[i+1][j][k][l] += dp[i][j][k][-1]*(int(l%2==1)-int(l%5==0))
dp[i+1][min(2,j+1)][k][l] += dp[i][j][k][-1]*(int(l%2==0)-int(l%4==0))
dp[i+1][min(2,j+2)][k][l] += dp[i][j][k][-1]*int(l%4==0)
dp[i+1][j][min(2,k+1)][l] += dp[i][j][k][-1]*int(l%5==0)
dp1 = [[[0]*3 for _ in range(3)] for _ in N+[0]]
ans = ModInt(0)
for i in range(digit-1):
ans += dp[i+1][-1][-1][-1]
for i in range(digit):
if N[i-1]>0 and N[i]>0:
for j in range(3): #2
for k in range(3): #5
dp1[i+1][j][k] += (dp[i][j][k][N[i-1]-1]+dp1[i][j][k])*(int(N[i]%2==1)-int(N[i]%5==0))
dp1[i+1][min(2,j+1)][k] += (dp[i][j][k][N[i-1]-1]+dp1[i][j][k])*(int(N[i]%2==0)-int(N[i]%4==0))
dp1[i+1][min(2,j+2)][k] += (dp[i][j][k][N[i-1]-1]+dp1[i][j][k])*int(N[i]%4==0)
dp1[i+1][j][min(2,k+1)] += (dp[i][j][k][N[i-1]-1]+dp1[i][j][k])*int(N[i]%5==0)
ans += dp1[-1][-1][-1]+dp[-1][-1][-1][N[-1]-1]
print(ans)