結果

問題 No.1417 100の倍数かつ正整数(2)
ユーザー polylogKpolylogK
提出日時 2021-03-06 00:26:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 35 ms / 3,000 ms
コード長 4,280 bytes
コンパイル時間 2,157 ms
コンパイル使用メモリ 205,152 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-07 06:55:04
合計ジャッジ時間 3,794 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 3 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 3 ms
5,248 KB
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
testcase_28 AC 2 ms
5,248 KB
testcase_29 AC 3 ms
5,248 KB
testcase_30 AC 4 ms
5,248 KB
testcase_31 AC 5 ms
5,248 KB
testcase_32 AC 8 ms
5,248 KB
testcase_33 AC 18 ms
5,248 KB
testcase_34 AC 31 ms
5,248 KB
testcase_35 AC 32 ms
5,248 KB
testcase_36 AC 32 ms
5,248 KB
testcase_37 AC 30 ms
5,248 KB
testcase_38 AC 35 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "000.cpp"
#include <bits/stdc++.h>
using namespace std::literals::string_literals;
using i64 = std::int_fast64_t;
using std::cout;
using std::cerr;
using std::endl;
using std::cin;

template<typename T> std::vector<T> make_v(size_t a){return std::vector<T>(a);}
template<typename T, typename... Ts> auto make_v(size_t a, Ts... ts){
  return std::vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}

#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"



#line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"

namespace cplib {
template <std::uint_fast64_t Modulus>
class modint {
	using u32 = std::uint_fast32_t;
	using u64 = std::uint_fast64_t;
	using i32 = std::int_fast32_t;
	using i64 = std::int_fast64_t;

	inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };

public:
	u64 a;
	static constexpr u64 mod = Modulus;

	constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}

	constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
	constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
	constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
	constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
	constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
	constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
	constexpr modint operator-() const noexcept { return modint(Modulus - a); }
	constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
	constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
	const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
	const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
	const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
	const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
	const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
	const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
	constexpr modint& operator+=(const modint& rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) a -= Modulus;
		return *this;
	}
	constexpr modint& operator-=(const modint& rhs) noexcept {
		if (a < rhs.a) a += Modulus;
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint& rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) (*this) *= rhs;

			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
	constexpr modint& operator^=(u64 k) noexcept {
		auto b = modint(1);
		while(k) {
			if(k & 1) b = b * (*this);
			(*this) *= (*this);
			k >>= 1;
		}
		return (*this) = b;
	}
	constexpr modint& operator=(const modint& rhs) noexcept {
		a = rhs.a;
		return (*this);
	}

	const modint inverse() const {
		return modint(1) / *this;
	}
	const modint power(i64 k) const {
		if(k < 0) return modint(*this).inverse() ^ (-k);
		return modint(*this) ^ k;
	}

	explicit operator bool() const { return a; }
	explicit operator u64() const { return a; }
	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }

	friend std::ostream& operator<<(std::ostream& os, const modint& p) {
		return os << p.a;
	}
	friend std::istream& operator>>(std::istream& is, modint& p) {
		u64 t;
		is >> t;
		p = modint(t);
		return is;
	}
};
}


#line 15 "000.cpp"
using mint = cplib::modint<1'000'000'007>;

int main() {
	std::string s; cin >> s;

	std::vector<mint> dp0(100), dp1(100); dp1[1] = 1;
	for(int i = 0; i < s.size(); i++) {
		const int D = s[i] - '0';

		std::vector<mint> nxt0(100), nxt1(100);
		for(int j = 0; j < 100; j++) {
			for(int d = 1; d <= 9; d++) {
				if(d < D) {
					nxt0[j * d % 100] += dp0[j] + dp1[j];
				} else if(d == D) {
					nxt0[j * d % 100] += dp0[j];
					nxt1[j * d % 100] += dp1[j];
				} else {
					nxt0[j * d % 100] += dp0[j];
				}
			}
		}
		nxt0[1] += 1;

		dp0.swap(nxt0);
		dp1.swap(nxt1);
	}
	printf("%lld\n", dp0[0] + dp1[0]);
	return 0;
}
0