結果
| 問題 | No.1417 100の倍数かつ正整数(2) | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2021-03-06 00:28:27 | 
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 29 ms / 3,000 ms | 
| コード長 | 4,197 bytes | 
| コンパイル時間 | 1,867 ms | 
| コンパイル使用メモリ | 197,100 KB | 
| 最終ジャッジ日時 | 2025-01-19 12:09:08 | 
| ジャッジサーバーID (参考情報) | judge3 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 36 | 
コンパイルメッセージ
000.cpp: In function ‘int main()’: 000.cpp:37:9: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘cplib::modint<1000000007>’ [-Wformat=]
ソースコード
#line 1 "000.cpp"
#include <bits/stdc++.h>
using namespace std::literals::string_literals;
using i64 = std::int_fast64_t;
using std::cout;
using std::cerr;
using std::endl;
using std::cin;
template<typename T> std::vector<T> make_v(size_t a){return std::vector<T>(a);}
template<typename T, typename... Ts> auto make_v(size_t a, Ts... ts){
  return std::vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
#line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
namespace cplib {
template <std::uint_fast64_t Modulus>
class modint {
	using u32 = std::uint_fast32_t;
	using u64 = std::uint_fast64_t;
	using i32 = std::int_fast32_t;
	using i64 = std::int_fast64_t;
	inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };
public:
	u64 a;
	static constexpr u64 mod = Modulus;
	constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}
	constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
	constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
	constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
	constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
	constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
	constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
	constexpr modint operator-() const noexcept { return modint(Modulus - a); }
	constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
	constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
	const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
	const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
	const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
	const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
	const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
	const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
	constexpr modint& operator+=(const modint& rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) a -= Modulus;
		return *this;
	}
	constexpr modint& operator-=(const modint& rhs) noexcept {
		if (a < rhs.a) a += Modulus;
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint& rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) (*this) *= rhs;
			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
	constexpr modint& operator^=(u64 k) noexcept {
		auto b = modint(1);
		while(k) {
			if(k & 1) b = b * (*this);
			(*this) *= (*this);
			k >>= 1;
		}
		return (*this) = b;
	}
	constexpr modint& operator=(const modint& rhs) noexcept {
		a = rhs.a;
		return (*this);
	}
	const modint inverse() const {
		return modint(1) / *this;
	}
	const modint power(i64 k) const {
		if(k < 0) return modint(*this).inverse() ^ (-k);
		return modint(*this) ^ k;
	}
	explicit operator bool() const { return a; }
	explicit operator u64() const { return a; }
	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }
	friend std::ostream& operator<<(std::ostream& os, const modint& p) {
		return os << p.a;
	}
	friend std::istream& operator>>(std::istream& is, modint& p) {
		u64 t;
		is >> t;
		p = modint(t);
		return is;
	}
};
}
#line 15 "000.cpp"
using mint = cplib::modint<1'000'000'007>;
int main() {
	std::string s; cin >> s;
	std::vector<mint> dp0(100), dp1(100); dp1[1] = 1;
	for(int i = 0; i < s.size(); i++) {
		const int D = s[i] - '0';
		std::vector<mint> nxt0(100), nxt1(100);
		for(int j = 0; j < 100; j++) {
			for(int d = 1; d <= 9; d++) {
				if(d <  D) nxt0[j * d % 100] += dp1[j];
				if(d == D) nxt1[j * d % 100] += dp1[j];
				nxt0[j * d % 100] += dp0[j];
			}
		}
		nxt0[1] += 1;
		dp0.swap(nxt0);
		dp1.swap(nxt1);
	}
	printf("%lld\n", dp0[0] + dp1[0]);
	return 0;
}
            
            
            
        