結果
問題 | No.573 a^2[i] = a[i] |
ユーザー | None |
提出日時 | 2021-03-06 18:34:06 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,374 bytes |
コンパイル時間 | 409 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 84,992 KB |
最終ジャッジ日時 | 2024-10-08 19:09:31 |
合計ジャッジ時間 | 3,828 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
52,992 KB |
testcase_01 | AC | 39 ms
52,736 KB |
testcase_02 | AC | 44 ms
52,736 KB |
testcase_03 | AC | 40 ms
53,120 KB |
testcase_04 | AC | 40 ms
52,736 KB |
testcase_05 | AC | 38 ms
53,120 KB |
testcase_06 | AC | 39 ms
52,480 KB |
testcase_07 | AC | 39 ms
52,736 KB |
testcase_08 | AC | 38 ms
52,736 KB |
testcase_09 | AC | 42 ms
52,736 KB |
testcase_10 | AC | 37 ms
52,736 KB |
testcase_11 | AC | 40 ms
52,480 KB |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
ソースコード
class Combination: def __init__(self, n_max, MOD=10 ** 9 + 7): """ PREP = O(n_max + log(MOD)) :param self.fac[n]: n! :param self.facinv[n]: 1/n! """ self.mod = MOD f = 1 self.fac = fac = [f] for i in range(1, n_max+1): f = f * i % MOD fac.append(f) f = pow(f, MOD - 2, MOD) self.facinv = facinv = [f] for i in range(n_max, 0, -1): f = f * i % MOD facinv.append(f) facinv.reverse() def __call__(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod def F(self, n): """ n! """ return self.fac[n] def C(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod def P(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] * self.facinv[n-r] % self.mod def H(self, n, r): """ (箱区別:〇 ボール区別:× 空箱:〇) 重複組み合わせ nHm """ if not 0 <= r <= n+r-1: return 0 return self.fac[n+r-1] * self.facinv[r] % self.mod * self.facinv[n-1] % self.mod def rising_factorial(self, n, r): """ 上昇階乗冪 n * (n+1) * ... * (n+r-1) """ return self.fac[n+r-1] * self.facinv[n-1] % self.mod def stirling_first(self, n, k): """ 第 1 種スターリング数 lru_cache を使うと O(nk) # k 要素を n 個の巡回列に分割する場合の数 """ if n == k: return 1 if k == 0: return 0 return (self.stirling_first(n-1, k-1) + (n-1)*self.stirling_first(n-1, k)) % self.mod def stirling_second(self, n, k): """ 第 2 種スターリング数 O(k + log(n)) """ if n == k: return 1 # n==k==0 のときのため return self.facinv[k] * sum((-1)**(k-m) * self.C(k, m) * pow(m, n, self.mod) for m in range(1, k+1)) % self.mod def grouping(self, n, k): """ (箱区別:× ボール区別:〇 空箱:×) 組み分け mSn。第二種スターリング数と添え字を交換したもの """ if n == k: return 1 # n==k==0 のときのため return self.facinv[n] * sum((-1)**(n-m) * self.C(n, m) * pow(m, k, self.mod) for m in range(1, n+1)) % self.mod def sum_groupiing(self, n, k): """ (箱区別:× ボール区別:〇 空箱:〇) 重複順列 Σ_(l=1,...,n) mSl """ return sum(self.grouping(n,m)for m in range(1, k+1)) % self.mod def balls_and_boxes(self, n, k): """ (箱区別:〇 ボール区別:〇 空箱:×) 組み分け mSn * n! O(k + log(n)) """ return sum((-1)**(n-m) * self.C(n, m) * pow(m, k, self.mod) for m in range(1, n+1)) % self.mod def bernoulli(self, n): """ ベルヌーイ数。べき乗和を求める際に必要(Faulhaber の定理。 lru_cache を使うと O(n**2 * log(mod)) """ if n == 0: return 1 if n % 2 and n >= 3: return 0 # 高速化 return (- pow(n+1, self.mod-2, self.mod) * sum(self.C(n+1, k) * self.bernoulli(k) % self.mod for k in range(n))) % self.mod def faulhaber(self, k, n): """ べき乗和 0^k + 1^k + ... + (n-1)^k bernoulli に lru_cache を使うと O(k**2 * log(mod)) bernoulli が計算済みなら O(k * log(mod)) """ return pow(k+1, self.mod-2, self.mod) * sum(self.C(k+1, j) * self.bernoulli(j) % self.mod * pow(n, k-j+1, self.mod) % self.mod for j in range(k+1)) % self.mod def lah(self, n, k): """ n 要素を k 個の空でない順序付き集合に分割する場合の数 O(1) """ return self.C(n-1, k-1) * self.fac[n] % self.mod * self.facinv[k] % self.mod def bell(self, n, k): """ n 要素を k グループ以下に分割する場合の数 O(k**2 + k*log(mod)) """ return sum(self.stirling_second(n, j) for j in range(1, k+1)) % self.mod def montmort(self, n): """ 順列を置換した数列のうち、ai != i となるような数列の数 """ return sum( (-1)**(k%2) * self.fac[n]*self.facinv[k] for k in range(2,n+1)) % self.mod class Combination2: """ without mod """ def __init__(self, n_max): f = 1 self.fac = fac = [f] for i in range(1, n_max+1): f = f * i fac.append(f) def __call__(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] // self.fac[r] // self.fac[n-r] def F(self, n): """ n! """ return self.fac[n] def C(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] // self.fac[r] // self.fac[n-r] def P(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] // self.fac[n-r] def H(self, n, r): """ (箱区別:〇 ボール区別:× 空箱:〇) 重複組み合わせ nHm """ if not 0 <= r <= n+r-1: return 0 return self.fac[n+r-1] // self.fac[r] // self.fac[n-1] ############################################################################################## import sys input = sys.stdin.readline MOD=10**9+7 N=int(input()) C = Combination(N, MOD=MOD) res=0 for k in range(N+1): res+=C(N,k)*pow(N-k,k,MOD) print(res)