結果

問題 No.483 マッチ並べ
ユーザー nebocco
提出日時 2021-03-08 20:49:56
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 15,939 bytes
コンパイル時間 17,773 ms
コンパイル使用メモリ 383,684 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-10 11:34:55
合計ジャッジ時間 15,444 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 53
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

fn main() {
let mut io = IO::new();
input!{ from io,
n: usize,
l: [(Usize1, Usize1, Usize1, Usize1); n]
}
let m = 100;
let mut sat = TwoSat::new(n);
let mut g = vec![Vec::new(); m*m];
for (i, &(a, b, c, d)) in l.iter().enumerate() {
let u = a * m + b;
let v = c * m + d;
for &(j, x) in &g[u] {
sat.add_clause(i, false, j, x);
}
for &(j, x) in &g[v] {
sat.add_clause(i, true, j, x);
}
g[u].push((i, false));
g[v].push((i, true));
}
let ans = if sat.solve().is_some() {
"YES"
} else {
"NO"
};
io.println(ans);
}
// * verified: https://judge.yosupo.jp/submission/26465
// ------------ 2-SAT start ------------
// * verified: https://judge.yosupo.jp/submission/26463
// ------------ Strongly Connected Components start ------------
// ! DirectedGraph::reverse() is too heavy
pub trait SCC {
fn strongly_connected(&self) -> (usize, Vec<usize>);
fn groups(&self) -> Vec<Vec<usize>>;
}
impl<C: Cost> SCC for DirectedGraph<C> {
fn strongly_connected(&self) -> (usize, Vec<usize>) {
fn _scc_dfs<C: Cost>(graph: &DirectedGraph<C>, x: usize, res: &mut [Option<usize>]) {
for y in graph.edges_from(x) {
if res[y.to].is_none() {
res[y.to] = res[x];
_scc_dfs(graph, y.to, res);
}
}
}
let n = self.size();
let post_backward = Traversal::post_order(&self.backward);
let mut res: Vec<Option<usize>> = vec![None; n];
let mut cnt = 0;
for &x in post_backward.index.iter().rev() {
if res[x].is_none() {
res[x] = Some(cnt);
_scc_dfs(self, x, &mut res);
cnt += 1;
}
}
(
cnt,
res.iter().map(|x| cnt - 1 - x.unwrap()).collect(),
)
}
fn groups(&self) -> Vec<Vec<usize>> {
let (c, g) = self.strongly_connected();
let mut res = vec![Vec::new(); c];
for (i, &x) in g.iter().enumerate() {
res[x].push(i);
}
res
}
}
// ------------ Strongly Connected Components end ------------
pub struct TwoSat(DirectedGraph<Void>);
impl TwoSat {
pub fn new(n: usize) -> Self {
Self(DirectedGraph::new(2 * n))
}
pub fn add_clause(&mut self, i: usize, f: bool, j: usize, g: bool) {
self.0.add_edge(2 * i + !f as usize, 2 * j + g as usize, Void());
self.0.add_edge(2 * j + !g as usize, 2 * i + f as usize, Void());
}
pub fn solve(&self) -> Option<Vec<bool>> {
self.0
.strongly_connected().1
.chunks_exact(2)
.map(|v| {
use std::cmp::Ordering::*;
match v[0].cmp(&v[1]) {
Equal => None,
Less => Some(true),
Greater => Some(false),
}
})
.collect()
}
}
// ------------ 2-SAT end ------------
#[derive(Debug, Clone)]
pub struct Traversal {
pub index: Vec<usize>,
pub time: Vec<usize>,
}
impl Traversal {
pub fn pre_order<C: Cost>(graph: &[Vec<Edge<C>>]) -> Self {
fn _dfs<C: Cost>(graph: &[Vec<Edge<C>>], x: usize, res: &mut PermutationBuilder) {
res.visit(x);
for &y in graph[x].iter() {
if !res.on_stack(y.to) {
_dfs(graph, y.to, res);
}
}
}
let n = graph.len();
let mut res = PermutationBuilder::new(n);
for i in 0..n {
if !res.on_stack(i) {
_dfs(graph, i, &mut res);
}
}
res.build()
}
pub fn post_order<C: Cost>(graph: &[Vec<Edge<C>>]) -> Self {
fn _dfs<C: Cost>(graph: &[Vec<Edge<C>>], x: usize, ckd: &mut [bool], res: &mut PermutationBuilder) {
for &y in graph[x].iter() {
if !std::mem::replace(&mut ckd[y.to], true) {
_dfs(graph, y.to, ckd, res);
}
}
res.visit(x);
}
let n = graph.len();
let mut ckd = vec![false; n];
let mut res = PermutationBuilder::new(n);
for i in 0..n {
if !std::mem::replace(&mut ckd[i], true) {
_dfs(graph, i, &mut ckd, &mut res);
}
}
res.build()
}
}
#[derive(Debug, Clone)]
struct PermutationBuilder {
index: Vec<usize>,
time: Vec<usize>,
}
impl PermutationBuilder {
fn new(n: usize) -> Self {
Self {
index: Vec::with_capacity(n),
time: vec![n; n],
}
}
fn build(self) -> Traversal {
Traversal {
index: self.index,
time: self.time,
}
}
#[allow(dead_code)]
fn is_empty(&self) -> bool {
self.time.is_empty()
}
fn len(&self) -> usize {
self.time.len()
}
fn time(&self) -> usize {
self.index.len()
}
fn visit(&mut self, x: usize) {
assert!(!self.on_stack(x));
self.time[x] = self.time();
self.index.push(x);
}
fn on_stack(&self, x: usize) -> bool {
self.time[x] != self.len()
}
}
// ------------ Graph impl start ------------
pub trait Cost:
Element
+ Clone + Copy + std::fmt::Display
+ Eq + Ord
+ Zero + One
+ Add<Output = Self> + AddAssign
+ Sub<Output = Self>
+ Neg<Output = Self>
{
const MAX: Self;
}
#[derive(Copy, Clone)]
pub struct Edge<C = Void> {
// pub from: usize,
pub to: usize,
pub cost: C,
pub id: usize
}
pub struct UndirectedGraph<C>(pub Vec<Vec<Edge<C>>>, pub usize);
pub struct DirectedGraph<C>{
pub forward: Vec<Vec<Edge<C>>>,
pub backward: Vec<Vec<Edge<C>>>,
pub count: usize,
}
pub trait Graph<C: Element> {
fn new(size: usize) -> Self;
fn size(&self) -> usize;
fn add_edge(&mut self, u: usize, v: usize, cost: C);
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>>;
}
impl<C: Element> Graph<C> for UndirectedGraph<C> {
fn new(size: usize) -> Self {
Self(vec![Vec::<Edge<C>>::new(); size], 0)
}
fn size(&self) -> usize {
self.0.len()
}
fn add_edge(&mut self, u: usize, v: usize, cost: C) {
self.0[u].push(Edge{ to: v, cost: cost.clone(), id: self.1 });
self.0[v].push(Edge{ to: u, cost: cost.clone(), id: self.1 });
self.1 += 1;
}
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
self.0[v].iter()
}
}
impl<C: Element> Graph<C> for DirectedGraph<C> {
fn new(size: usize) -> Self {
Self {
forward: vec![Vec::<Edge<C>>::new(); size],
backward: vec![Vec::<Edge<C>>::new(); size],
count: 0
}
}
fn size(&self) -> usize {
self.forward.len()
}
fn add_edge(&mut self, u: usize, v: usize, cost: C) {
self.forward[u].push(Edge{ to: v, cost: cost.clone(), id: self.count });
self.backward[v].push(Edge{ to: u, cost: cost.clone(), id: self.count });
self.count += 1;
}
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
self.forward[v].iter()
}
}
impl<C: Element> DirectedGraph<C> {
pub fn edges_to(&self, u: usize) -> std::slice::Iter<Edge<C>> {
self.backward[u].iter()
}
pub fn reverse(&self) -> Self {
Self {
forward: self.backward.clone(),
backward: self.forward.clone(),
count: self.count,
}
}
}
macro_rules! impl_cost {
($($T:ident,)*) => {
$(
impl Cost for $T { const MAX: Self = std::$T::MAX; }
)*
};
}
impl_cost! {
i8, i16, i32, i64, i128, isize,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Void();
impl std::fmt::Display for Void {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "")
}
}
impl Zero for Void {
fn zero() -> Self { Void() }
fn is_zero(&self) -> bool { true }
}
impl One for Void {
fn one() -> Self { Void() }
fn is_one(&self) -> bool { true }
}
impl Add for Void {
type Output = Self;
fn add(self, _: Self) -> Self { Void() }
}
impl AddAssign for Void {
fn add_assign(&mut self, _: Self) {}
}
impl Sub for Void {
type Output = Self;
fn sub(self, _: Self) -> Self { Void() }
}
impl Neg for Void {
type Output = Self;
fn neg(self) -> Self { Void() }
}
impl Cost for Void { const MAX: Self = Void(); }
// ------------ Graph impl end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
///
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
///
pub trait Associative: Magma {}
///
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
///
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
///
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
///
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
///
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
///
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
///
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
///
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
///
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
impl Scan for char {
type Output = char;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().next().unwrap()
}
}
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0