結果
問題 | No.483 マッチ並べ |
ユーザー |
|
提出日時 | 2021-03-08 20:49:56 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 15,939 bytes |
コンパイル時間 | 17,773 ms |
コンパイル使用メモリ | 383,684 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-10 11:34:55 |
合計ジャッジ時間 | 15,444 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 53 |
ソースコード
fn main() {let mut io = IO::new();input!{ from io,n: usize,l: [(Usize1, Usize1, Usize1, Usize1); n]}let m = 100;let mut sat = TwoSat::new(n);let mut g = vec![Vec::new(); m*m];for (i, &(a, b, c, d)) in l.iter().enumerate() {let u = a * m + b;let v = c * m + d;for &(j, x) in &g[u] {sat.add_clause(i, false, j, x);}for &(j, x) in &g[v] {sat.add_clause(i, true, j, x);}g[u].push((i, false));g[v].push((i, true));}let ans = if sat.solve().is_some() {"YES"} else {"NO"};io.println(ans);}// * verified: https://judge.yosupo.jp/submission/26465// ------------ 2-SAT start ------------// * verified: https://judge.yosupo.jp/submission/26463// ------------ Strongly Connected Components start ------------// ! DirectedGraph::reverse() is too heavypub trait SCC {fn strongly_connected(&self) -> (usize, Vec<usize>);fn groups(&self) -> Vec<Vec<usize>>;}impl<C: Cost> SCC for DirectedGraph<C> {fn strongly_connected(&self) -> (usize, Vec<usize>) {fn _scc_dfs<C: Cost>(graph: &DirectedGraph<C>, x: usize, res: &mut [Option<usize>]) {for y in graph.edges_from(x) {if res[y.to].is_none() {res[y.to] = res[x];_scc_dfs(graph, y.to, res);}}}let n = self.size();let post_backward = Traversal::post_order(&self.backward);let mut res: Vec<Option<usize>> = vec![None; n];let mut cnt = 0;for &x in post_backward.index.iter().rev() {if res[x].is_none() {res[x] = Some(cnt);_scc_dfs(self, x, &mut res);cnt += 1;}}(cnt,res.iter().map(|x| cnt - 1 - x.unwrap()).collect(),)}fn groups(&self) -> Vec<Vec<usize>> {let (c, g) = self.strongly_connected();let mut res = vec![Vec::new(); c];for (i, &x) in g.iter().enumerate() {res[x].push(i);}res}}// ------------ Strongly Connected Components end ------------pub struct TwoSat(DirectedGraph<Void>);impl TwoSat {pub fn new(n: usize) -> Self {Self(DirectedGraph::new(2 * n))}pub fn add_clause(&mut self, i: usize, f: bool, j: usize, g: bool) {self.0.add_edge(2 * i + !f as usize, 2 * j + g as usize, Void());self.0.add_edge(2 * j + !g as usize, 2 * i + f as usize, Void());}pub fn solve(&self) -> Option<Vec<bool>> {self.0.strongly_connected().1.chunks_exact(2).map(|v| {use std::cmp::Ordering::*;match v[0].cmp(&v[1]) {Equal => None,Less => Some(true),Greater => Some(false),}}).collect()}}// ------------ 2-SAT end ------------#[derive(Debug, Clone)]pub struct Traversal {pub index: Vec<usize>,pub time: Vec<usize>,}impl Traversal {pub fn pre_order<C: Cost>(graph: &[Vec<Edge<C>>]) -> Self {fn _dfs<C: Cost>(graph: &[Vec<Edge<C>>], x: usize, res: &mut PermutationBuilder) {res.visit(x);for &y in graph[x].iter() {if !res.on_stack(y.to) {_dfs(graph, y.to, res);}}}let n = graph.len();let mut res = PermutationBuilder::new(n);for i in 0..n {if !res.on_stack(i) {_dfs(graph, i, &mut res);}}res.build()}pub fn post_order<C: Cost>(graph: &[Vec<Edge<C>>]) -> Self {fn _dfs<C: Cost>(graph: &[Vec<Edge<C>>], x: usize, ckd: &mut [bool], res: &mut PermutationBuilder) {for &y in graph[x].iter() {if !std::mem::replace(&mut ckd[y.to], true) {_dfs(graph, y.to, ckd, res);}}res.visit(x);}let n = graph.len();let mut ckd = vec![false; n];let mut res = PermutationBuilder::new(n);for i in 0..n {if !std::mem::replace(&mut ckd[i], true) {_dfs(graph, i, &mut ckd, &mut res);}}res.build()}}#[derive(Debug, Clone)]struct PermutationBuilder {index: Vec<usize>,time: Vec<usize>,}impl PermutationBuilder {fn new(n: usize) -> Self {Self {index: Vec::with_capacity(n),time: vec![n; n],}}fn build(self) -> Traversal {Traversal {index: self.index,time: self.time,}}#[allow(dead_code)]fn is_empty(&self) -> bool {self.time.is_empty()}fn len(&self) -> usize {self.time.len()}fn time(&self) -> usize {self.index.len()}fn visit(&mut self, x: usize) {assert!(!self.on_stack(x));self.time[x] = self.time();self.index.push(x);}fn on_stack(&self, x: usize) -> bool {self.time[x] != self.len()}}// ------------ Graph impl start ------------pub trait Cost:Element+ Clone + Copy + std::fmt::Display+ Eq + Ord+ Zero + One+ Add<Output = Self> + AddAssign+ Sub<Output = Self>+ Neg<Output = Self>{const MAX: Self;}#[derive(Copy, Clone)]pub struct Edge<C = Void> {// pub from: usize,pub to: usize,pub cost: C,pub id: usize}pub struct UndirectedGraph<C>(pub Vec<Vec<Edge<C>>>, pub usize);pub struct DirectedGraph<C>{pub forward: Vec<Vec<Edge<C>>>,pub backward: Vec<Vec<Edge<C>>>,pub count: usize,}pub trait Graph<C: Element> {fn new(size: usize) -> Self;fn size(&self) -> usize;fn add_edge(&mut self, u: usize, v: usize, cost: C);fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>>;}impl<C: Element> Graph<C> for UndirectedGraph<C> {fn new(size: usize) -> Self {Self(vec![Vec::<Edge<C>>::new(); size], 0)}fn size(&self) -> usize {self.0.len()}fn add_edge(&mut self, u: usize, v: usize, cost: C) {self.0[u].push(Edge{ to: v, cost: cost.clone(), id: self.1 });self.0[v].push(Edge{ to: u, cost: cost.clone(), id: self.1 });self.1 += 1;}fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {self.0[v].iter()}}impl<C: Element> Graph<C> for DirectedGraph<C> {fn new(size: usize) -> Self {Self {forward: vec![Vec::<Edge<C>>::new(); size],backward: vec![Vec::<Edge<C>>::new(); size],count: 0}}fn size(&self) -> usize {self.forward.len()}fn add_edge(&mut self, u: usize, v: usize, cost: C) {self.forward[u].push(Edge{ to: v, cost: cost.clone(), id: self.count });self.backward[v].push(Edge{ to: u, cost: cost.clone(), id: self.count });self.count += 1;}fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {self.forward[v].iter()}}impl<C: Element> DirectedGraph<C> {pub fn edges_to(&self, u: usize) -> std::slice::Iter<Edge<C>> {self.backward[u].iter()}pub fn reverse(&self) -> Self {Self {forward: self.backward.clone(),backward: self.forward.clone(),count: self.count,}}}macro_rules! impl_cost {($($T:ident,)*) => {$(impl Cost for $T { const MAX: Self = std::$T::MAX; })*};}impl_cost! {i8, i16, i32, i64, i128, isize,}#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]pub struct Void();impl std::fmt::Display for Void {fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {write!(f, "")}}impl Zero for Void {fn zero() -> Self { Void() }fn is_zero(&self) -> bool { true }}impl One for Void {fn one() -> Self { Void() }fn is_one(&self) -> bool { true }}impl Add for Void {type Output = Self;fn add(self, _: Self) -> Self { Void() }}impl AddAssign for Void {fn add_assign(&mut self, _: Self) {}}impl Sub for Void {type Output = Self;fn sub(self, _: Self) -> Self { Void() }}impl Neg for Void {type Output = Self;fn neg(self) -> Self { Void() }}impl Cost for Void { const MAX: Self = Void(); }// ------------ Graph impl end ------------// ------------ algebraic traits start ------------use std::marker::Sized;use std::ops::*;/// 元pub trait Element: Sized + Clone + PartialEq {}impl<T: Sized + Clone + PartialEq> Element for T {}/// 結合性pub trait Associative: Magma {}/// マグマpub trait Magma: Element + Add<Output=Self> {}impl<T: Element + Add<Output=Self>> Magma for T {}/// 半群pub trait SemiGroup: Magma + Associative {}impl<T: Magma + Associative> SemiGroup for T {}/// モノイドpub trait Monoid: SemiGroup + Zero {}impl<T: SemiGroup + Zero> Monoid for T {}pub trait ComMonoid: Monoid + AddAssign {}impl<T: Monoid + AddAssign> ComMonoid for T {}/// 群pub trait Group: Monoid + Neg<Output=Self> {}impl<T: Monoid + Neg<Output=Self>> Group for T {}pub trait ComGroup: Group + ComMonoid {}impl<T: Group + ComMonoid> ComGroup for T {}/// 半環pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}/// 環pub trait Ring: ComGroup + SemiRing {}impl<T: ComGroup + SemiRing> Ring for T {}pub trait ComRing: Ring + MulAssign {}impl<T: Ring + MulAssign> ComRing for T {}/// 体pub trait Field: ComRing + Div<Output=Self> + DivAssign {}impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}/// 加法単元pub trait Zero: Element {fn zero() -> Self;fn is_zero(&self) -> bool {*self == Self::zero()}}/// 乗法単元pub trait One: Element {fn one() -> Self;fn is_one(&self) -> bool {*self == Self::one()}}macro_rules! impl_integer {($($T:ty,)*) => {$(impl Associative for $T {}impl Zero for $T {fn zero() -> Self { 0 }fn is_zero(&self) -> bool { *self == 0 }}impl<'a> Zero for &'a $T {fn zero() -> Self { &0 }fn is_zero(&self) -> bool { *self == &0 }}impl One for $T {fn one() -> Self { 1 }fn is_one(&self) -> bool { *self == 1 }}impl<'a> One for &'a $T {fn one() -> Self { &1 }fn is_one(&self) -> bool { *self == &1 }})*};}impl_integer! {i8, i16, i32, i64, i128, isize,u8, u16, u32, u64, u128, usize,}// ------------ algebraic traits end ------------// ------------ io module start ------------use std::io::{stdout, BufWriter, Read, StdoutLock, Write};pub struct IO {iter: std::str::SplitAsciiWhitespace<'static>,buf: BufWriter<StdoutLock<'static>>,}impl IO {pub fn new() -> Self {let mut input = String::new();std::io::stdin().read_to_string(&mut input).unwrap();let input = Box::leak(input.into_boxed_str());let out = Box::new(stdout());IO {iter: input.split_ascii_whitespace(),buf: BufWriter::new(Box::leak(out).lock()),}}fn scan_str(&mut self) -> &'static str {self.iter.next().unwrap()}pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {<T as Scan>::scan(self)}pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {(0..n).map(|_| self.scan::<T>()).collect()}pub fn print<T: Print>(&mut self, x: T) {<T as Print>::print(self, x);}pub fn println<T: Print>(&mut self, x: T) {self.print(x);self.print("\n");}pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {if let Some(v) = iter.next() {self.print(v);for v in iter {self.print(delim);self.print(v);}}self.print("\n");}pub fn flush(&mut self) {self.buf.flush().unwrap();}}impl Default for IO {fn default() -> Self {Self::new()}}pub trait Scan {type Output;fn scan(io: &mut IO) -> Self::Output;}macro_rules! impl_scan {($($t:tt),*) => {$(impl Scan for $t {type Output = Self;fn scan(s: &mut IO) -> Self::Output {s.scan_str().parse().unwrap()}})*};}impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);impl Scan for char {type Output = char;fn scan(s: &mut IO) -> Self::Output {s.scan_str().chars().next().unwrap()}}pub enum Bytes {}impl Scan for Bytes {type Output = &'static [u8];fn scan(s: &mut IO) -> Self::Output {s.scan_str().as_bytes()}}pub enum Chars {}impl Scan for Chars {type Output = Vec<char>;fn scan(s: &mut IO) -> Self::Output {s.scan_str().chars().collect()}}pub enum Usize1 {}impl Scan for Usize1 {type Output = usize;fn scan(s: &mut IO) -> Self::Output {s.scan::<usize>().wrapping_sub(1)}}impl<T: Scan, U: Scan> Scan for (T, U) {type Output = (T::Output, U::Output);fn scan(s: &mut IO) -> Self::Output {(T::scan(s), U::scan(s))}}impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {type Output = (T::Output, U::Output, V::Output);fn scan(s: &mut IO) -> Self::Output {(T::scan(s), U::scan(s), V::scan(s))}}impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {type Output = (T::Output, U::Output, V::Output, W::Output);fn scan(s: &mut IO) -> Self::Output {(T::scan(s), U::scan(s), V::scan(s), W::scan(s))}}pub trait Print {fn print(w: &mut IO, x: Self);}macro_rules! impl_print_int {($($t:ty),*) => {$(impl Print for $t {fn print(w: &mut IO, x: Self) {w.buf.write_all(x.to_string().as_bytes()).unwrap();}})*};}impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);impl Print for u8 {fn print(w: &mut IO, x: Self) {w.buf.write_all(&[x]).unwrap();}}impl Print for &[u8] {fn print(w: &mut IO, x: Self) {w.buf.write_all(x).unwrap();}}impl Print for &str {fn print(w: &mut IO, x: Self) {w.print(x.as_bytes());}}impl Print for String {fn print(w: &mut IO, x: Self) {w.print(x.as_bytes());}}impl<T: Print, U: Print> Print for (T, U) {fn print(w: &mut IO, (x, y): Self) {w.print(x);w.print(" ");w.print(y);}}impl<T: Print, U: Print, V: Print> Print for (T, U, V) {fn print(w: &mut IO, (x, y, z): Self) {w.print(x);w.print(" ");w.print(y);w.print(" ");w.print(z);}}mod neboccoio_macro {#[macro_export]macro_rules! input {(@start $io:tt @read @rest) => {};(@start $io:tt @read @rest, $($rest: tt)*) => {input!(@start $io @read @rest $($rest)*)};(@start $io:tt @read @rest mut $($rest:tt)*) => {input!(@start $io @read @mut [mut] @rest $($rest)*)};(@start $io:tt @read @rest $($rest:tt)*) => {input!(@start $io @read @mut [] @rest $($rest)*)};(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();input!(@start $io @read @rest $($rest)*)};(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {let $($mut)* $var = $io.scan_vec::<$kind>($len);input!(@start $io @read @rest $($rest)*)};(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {let $($mut)* $var = $io.scan::<$kind>();input!(@start $io @read @rest $($rest)*)};(from $io:tt $($rest:tt)*) => {input!(@start $io @read @rest $($rest)*)};}}// ------------ io module end ------------