結果
問題 |
No.1442 I-wate Shortest Path Problem
|
ユーザー |
|
提出日時 | 2021-03-09 20:37:36 |
言語 | Kotlin (2.1.0) |
結果 |
AC
|
実行時間 | 2,699 ms / 3,000 ms |
コード長 | 4,181 bytes |
コンパイル時間 | 17,910 ms |
コンパイル使用メモリ | 454,628 KB |
実行使用メモリ | 135,196 KB |
最終ジャッジ日時 | 2024-10-11 12:35:54 |
合計ジャッジ時間 | 61,636 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 25 |
コンパイルメッセージ
Main.kt:75:13: warning: name shadowed: a var a = x ^ Main.kt:76:13: warning: name shadowed: b var b = y ^ Main.kt:138:10: warning: name shadowed: x for (x in ans) println(x) ^
ソースコード
import java.io.PrintWriter import java.util.* fun PrintWriter.solve() { val n = nextInt() val k = nextInt() //Making Graph-begin val cnt = IntArray(n + k) val a = Array(n - 1) { 0 } val b = Array(n - 1) { 0 } val c = Array(n - 1) { 0 } for (i in 0 until n - 1) { a[i] = nextInt() - 1 b[i] = nextInt() - 1 c[i] = nextInt() ++cnt[a[i]] ++cnt[b[i]] } val m = Array(k) { 0 } val p = Array(k) { 0 } val x = Array(k) { Array(0) { 0 } } for (i in 0 until k) { m[i] = nextInt() p[i] = nextInt() cnt[n + i] += m[i] x[i] = Array(m[i]) { nextInt() - 1 } for (j in x[i]) ++cnt[j] } val g = Array(n + k) { Array(0) { Pair<Int, Int>(0, 0) } } for (i in 0 until n + k) g[i] = Array(cnt[i]) { Pair<Int, Int>(0, 0) } for (i in 0 until n - 1) { g[a[i]][--cnt[a[i]]] = Pair<Int, Int>(b[i], c[i]) g[b[i]][--cnt[b[i]]] = Pair<Int, Int>(a[i], c[i]) } for (i in 0 until k) { for (j in x[i]) { g[n + i][--cnt[n + i]] = Pair<Int, Int>(j, 0) g[j][--cnt[j]] = Pair<Int, Int>(n + i, p[i]) } } //Making Graph-end //LCA-begin val logn = 16 val dep = Array(n) { -1 } val dis = LongArray(n) { 0 } val nxt = Array(logn + 1) { Array(n) { -1 } } val que = ArrayDeque<Int>() dep[0] = 0 que.addLast(0) while (que.isNotEmpty()) { val cur = que.pollFirst() for ((to, cost) in g[cur]) { if (to < n && dep[to] == -1) { dep[to] = dep[cur] + 1 dis[to] = dis[cur] + cost nxt[0][to] = cur que.addLast(to) } } } for (j in 0 until logn) { for (i in 0 until n) { if (nxt[j][i] != -1) { nxt[j + 1][i] = nxt[j][nxt[j][i]] } } } fun lca(x: Int, y: Int): Int { var a = x var b = y if (dep[a] > dep[b]) { a = y b = x } val d = dep[b] - dep[a] for (j in logn downTo 0) { if (d and (1 shl j) > 0) b = nxt[j][b] } if (a == b) return a for (j in logn downTo 0) { if (nxt[j][a] != nxt[j][b]) { a = nxt[j][a] b = nxt[j][b] } } return nxt[0][a] } //LCA-end val q = nextInt() val ans = Array(q) { 0L } val u = Array(q) { 0 } val v = Array(q) { 0 } for (i in 0 until q) { u[i] = nextInt() - 1 v[i] = nextInt() - 1 ans[i] = dis[u[i]] + dis[v[i]] - 2 * dis[lca(u[i], v[i])] } //Dijkstra-begin val dp = Array(n + k) { 0L } val pq = PriorityQueue<Long>() for (i in 0 until k) { val yet = Array(n + k) { true } dp[n + i] = 0 yet[n + i] = false pq.add((n + i).toLong()) while (pq.isNotEmpty()) { var d = pq.remove() val cur = (d % (n + k)).toInt() d /= n + k if (dp[cur] < d) continue for ((to, cost) in g[cur]) { if (yet[to]) { yet[to] = false dp[to] = d + cost pq.add((d + cost) * (n + k) + to) } else if (dp[to] > d + cost) { dp[to] = d + cost pq.add((d + cost) * (n + k) + to) } } } for (j in 0 until q) { if (ans[j] > dp[u[j]] + dp[v[j]] + p[i]) { ans[j] = dp[u[j]] + dp[v[j]] + p[i] } } } //Dijkstra-end for (x in ans) println(x) } fun main() { val writer = PrintWriter(System.out, false) writer.solve() writer.flush() } // region Scanner private var st = StringTokenizer("") private val br = System.`in`.bufferedReader() fun next(): String { while (!st.hasMoreTokens()) st = StringTokenizer(br.readLine()) return st.nextToken() } fun nextInt() = next().toInt() fun nextLong() = next().toLong() fun nextLine() = br.readLine()!! fun nextDouble() = next().toDouble() // endregion