結果

問題 No.1232 2^x = x
ユーザー kkishikkishi
提出日時 2021-03-10 17:45:23
言語 C++17(clang)
(17.0.6 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 13,967 bytes
コンパイル時間 2,854 ms
コンパイル使用メモリ 164,940 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-12 08:29:05
合計ジャッジ時間 3,560 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,824 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#ifndef ATCODER_MATH_HPP
#define ATCODER_MATH_HPP 1

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_MATH_HPP

namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}

long long inv_mod(long long x, long long m) {
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}

// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    // Contracts: 0 <= r0 < m0
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }
        // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)

        // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
        // r2 % m0 = r0
        // r2 % m1 = r1
        // -> (r0 + x*m0) % m1 = r1
        // -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
        // -> x = (r1 - r0) / g * inv(u0) (mod u1)

        // im = inv(u0) (mod u1) (0 <= im < u1)
        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);

        long long u1 = (m1 / g);
        // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
        if ((r1 - r0) % g) return {0, 0};

        // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
        long long x = (r1 - r0) / g % u1 * im % u1;

        // |r0| + |m0 * x|
        // < m0 + m0 * (u1 - 1)
        // = m0 + m0 * m1 / g - m0
        // = lcm(m0, m1)
        r0 += x * m0;
        m0 *= u1;  // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
    long long ans = 0;
    if (a >= m) {
        ans += (n - 1) * n * (a / m) / 2;
        a %= m;
    }
    if (b >= m) {
        ans += n * (b / m);
        b %= m;
    }

    long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
    if (y_max == 0) return ans;
    ans += (n - (x_max + a - 1) / a) * y_max;
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
    return ans;
}

}  // namespace atcoder

#endif  // ATCODER_MATH_HPP

#include <boost/hana/functional/fix.hpp>

template <typename T, typename = void>
struct is_dereferenceable : std::false_type {};
template <typename T>
struct is_dereferenceable<T, std::void_t<decltype(*std::declval<T>())>>
    : std::true_type {};

template <typename T, typename = void>
struct is_iterable : std::false_type {};
template <typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
                                  decltype(std::end(std::declval<T>()))>>
    : std::true_type {};

template <typename T, typename = void>
struct is_applicable : std::false_type {};
template <typename T>
struct is_applicable<T, std::void_t<decltype(std::tuple_size<T>::value)>>
    : std::true_type {};

template <typename T, typename... Ts>
void debug(const T& value, const Ts&... args);
template <typename T>
void debug(const T& v) {
  if constexpr (is_dereferenceable<T>::value) {
    std::cerr << "{";
    if (v) {
      debug(*v);
    } else {
      std::cerr << "nil";
    }
    std::cerr << "}";
  } else if constexpr (is_iterable<T>::value &&
                       !std::is_same<T, std::string>::value) {
    std::cerr << "{";
    for (auto it = std::begin(v); it != std::end(v); ++it) {
      if (it != std::begin(v)) std::cerr << ", ";
      debug(*it);
    }
    std::cerr << "}";
  } else if constexpr (is_applicable<T>::value) {
    std::cerr << "{";
    std::apply([](const auto&... args) { debug(args...); }, v);
    std::cerr << "}";
  } else {
    std::cerr << v;
  }
}
template <typename T, typename... Ts>
void debug(const T& value, const Ts&... args) {
  debug(value);
  std::cerr << ", ";
  debug(args...);
}
#if DEBUG
#define dbg(...)                        \
  do {                                  \
    cerr << #__VA_ARGS__ << ": ";       \
    debug(__VA_ARGS__);                 \
    cerr << " (L" << __LINE__ << ")\n"; \
  } while (0)
#else
#define dbg(...)
#endif

void read_from_cin() {}
template <typename T, typename... Ts>
void read_from_cin(T& value, Ts&... args) {
  std::cin >> value;
  read_from_cin(args...);
}
#define rd(type, ...) \
  type __VA_ARGS__;   \
  read_from_cin(__VA_ARGS__);
#define ints(...) rd(int, __VA_ARGS__);
#define strings(...) rd(string, __VA_ARGS__);

template <typename T>
void write_to_cout(const T& value) {
  if constexpr (std::is_same<T, bool>::value) {
    std::cout << (value ? "Yes" : "No");
  } else if constexpr (is_iterable<T>::value &&
                       !std::is_same<T, std::string>::value) {
    for (auto it = std::begin(value); it != std::end(value); ++it) {
      if (it != std::begin(value)) std::cout << " ";
      std::cout << *it;
    }
  } else {
    std::cout << value;
  }
}
template <typename T, typename... Ts>
void write_to_cout(const T& value, const Ts&... args) {
  write_to_cout(value);
  std::cout << ' ';
  write_to_cout(args...);
}
#define wt(...)                 \
  do {                          \
    write_to_cout(__VA_ARGS__); \
    cout << '\n';               \
  } while (0)

#define all(x) (x).begin(), (x).end()
#define eb(...) emplace_back(__VA_ARGS__)
#define pb(...) push_back(__VA_ARGS__)

#define dispatch(_1, _2, _3, name, ...) name

#define as_i64(x)                                                          \
  (                                                                        \
      [] {                                                                 \
        static_assert(                                                     \
            std::is_integral<                                              \
                typename std::remove_reference<decltype(x)>::type>::value, \
            "rep macro supports std integral types only");                 \
      },                                                                   \
      static_cast<std::int64_t>(x))

#define rep3(i, a, b) for (std::int64_t i = as_i64(a); i < as_i64(b); ++i)
#define rep2(i, n) rep3(i, 0, n)
#define rep1(n) rep2(_loop_variable_, n)
#define rep(...) dispatch(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)

#define rrep3(i, a, b) for (std::int64_t i = as_i64(b) - 1; i >= as_i64(a); --i)
#define rrep2(i, n) rrep3(i, 0, n)
#define rrep1(n) rrep2(_loop_variable_, n)
#define rrep(...) dispatch(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__)

#define each3(k, v, c) for (auto&& [k, v] : c)
#define each2(e, c) for (auto&& e : c)
#define each(...) dispatch(__VA_ARGS__, each3, each2)(__VA_ARGS__)

template <typename T>
std::istream& operator>>(std::istream& is, std::vector<T>& v) {
  for (T& vi : v) is >> vi;
  return is;
}

template <typename T, typename U>
std::istream& operator>>(std::istream& is, std::pair<T, U>& p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T, typename U>
bool chmax(T& a, U b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}

template <typename T, typename U>
bool chmin(T& a, U b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}

template <typename T, typename U>
auto max(T a, U b) {
  return a > b ? a : b;
}

template <typename T, typename U>
auto min(T a, U b) {
  return a < b ? a : b;
}

template <typename T>
std::int64_t sz(const T& v) {
  return std::size(v);
}

template <typename T>
std::int64_t popcount(T i) {
  return std::bitset<std::numeric_limits<T>::digits>(i).count();
}

template <typename T>
bool hasbit(T s, int i) {
  return std::bitset<std::numeric_limits<T>::digits>(s)[i];
}

template <typename T, typename U>
auto div_floor(T n, U d) {
  if (d < 0) {
    n = -n;
    d = -d;
  }
  if (n < 0) {
    return -((-n + d - 1) / d);
  }
  return n / d;
};

template <typename T, typename U>
auto div_ceil(T n, U d) {
  if (d < 0) {
    n = -n;
    d = -d;
  }
  if (n < 0) {
    return -(-n / d);
  }
  return (n + d - 1) / d;
}

template <typename T>
bool even(T x) {
  return x % 2 == 0;
}

const std::int64_t big = std::numeric_limits<std::int64_t>::max() / 4;

using i64 = std::int64_t;
using i32 = std::int32_t;

template <typename T>
using low_priority_queue =
    std::priority_queue<T, std::vector<T>, std::greater<T>>;

template <typename T>
using V = std::vector<T>;
template <typename T>
using VV = V<V<T>>;

void Main();

int main() {
  std::ios_base::sync_with_stdio(false);
  std::cin.tie(NULL);
  std::cout << std::fixed << std::setprecision(20);
  Main();
  return 0;
}

const auto& Fix = boost::hana::fix;

using namespace std;

#define int i64

int Solve() {
  ints(p);
  if (p == 2) return 2;
  return (p - 1) * atcoder::inv_mod(p - 1, p);
}

void Main() {
  ints(n);
  rep(n) wt(Solve());
}
0