結果
問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
ユーザー |
|
提出日時 | 2021-03-11 16:54:01 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 443 ms / 9,973 ms |
コード長 | 956 bytes |
コンパイル時間 | 352 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 77,312 KB |
最終ジャッジ日時 | 2024-11-16 23:37:23 |
合計ジャッジ時間 | 2,417 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 10 |
ソースコード
def miller_rabin(n): """素数判定 log(n)""" if n < 2: return False base = [2, 7, 61] if n < 4_759_123_141 else \ [2, 3, 5, 7, 11, 13, 17] if n < 341_550_071_728_321 else \ [2, 3, 5, 7, 11, 13, 17, 19, 23] if n < 3_825_123_056_546_413_051 else \ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] if n in base: return True if n % 2 == 0: return False d = n - 1 while d % 2 == 0: d //= 2 for a in base: t = d y = pow(a, t, n) while t != n - 1 and y != 1 and y != n - 1: y = y * y % n t *= 2 if y != n - 1 and t % 2 == 0: return False return True import sys input = sys.stdin.readline def print2D(matrix): print("\n".join(" ".join(map(str, v)) for v in matrix)) res = [] for _ in range(int(input())): n = int(input()) res.append((n, int(miller_rabin(n)))) print2D(res)