結果
| 問題 |
No.9 モンスターのレベル上げ
|
| ユーザー |
|
| 提出日時 | 2021-03-11 19:22:30 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 398 ms / 5,000 ms |
| コード長 | 10,197 bytes |
| コンパイル時間 | 16,074 ms |
| コンパイル使用メモリ | 379,300 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-30 21:22:49 |
| 合計ジャッジ時間 | 20,651 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
fn main() {
let mut io = IO::new();
input!{ from io,
n: usize,
al_: [i64; n],
mut bl: [i64; n],
}
let mut ans = 2000;
let al = al_.into_iter().map(|x| (x, 0)).collect::<Vec<_>>();
for _ in 0..n {
let mut cur = 0;
let mut h = DoublePriorityHeap::from(&al);
for &x in &bl {
let mut p = h.pop_min().unwrap();
p.0 += x / 2;
p.1 += 1;
if cur < p.1 {
cur = p.1;
}
h.push(p);
}
if ans > cur {
ans = cur;
}
bl.rotate_left(1);
}
io.println(ans);
}
// ------------ DoublePriorityHeap start ------------
#[derive(Default)]
pub struct DoublePriorityHeap<T: Element + Ord>(Vec<T>);
impl<T: Element + Ord> DoublePriorityHeap<T> {
pub fn new() -> Self {
Self(Vec::new())
}
pub fn from(vec: &[T]) -> Self {
let mut l = Self(vec.to_vec());
l.build();
l
}
pub fn push(&mut self, x: T) {
self.0.push(x);
self.up(self.0.len() - 1, 1);
}
pub fn pop_min(&mut self) -> Option<T> {
if self.0.len() < 3 {
self.0.pop()
} else {
let ret = self.0.swap_remove(1);
let k = self.down(1);
self.up(k, 1);
Some(ret)
}
}
pub fn pop_max(&mut self) -> Option<T> {
if self.0.len() < 2 {
self.0.pop()
} else {
let ret = self.0.swap_remove(0);
let k = self.down(0);
self.up(k, 1);
Some(ret)
}
}
pub fn get_min(&self) -> Option<&T> {
if self.0.len() < 2 {
self.0.get(0)
} else {
self.0.get(1)
}
}
pub fn get_max(&self) -> Option<&T> {
self.0.get(0)
}
fn build(&mut self) {
let n = self.0.len();
for i in (0..n).rev() {
if i & 1 == 1 && self.0[i-1] < self.0[i] {
self.0.swap(i-1, i);
}
let k = self.down(i);
self.up(k, i);
}
}
#[inline]
fn parent(k: usize) -> usize {
(k >> 1).wrapping_sub(1) & !1
}
fn down(&mut self, mut k: usize) -> usize {
let n = self.0.len();
let mut c: usize;
if k & 1 == 1 { // min heap
while 2 * k + 1 < n {
c = 2 * k + 3;
if n <= c || self.0[c-2] < self.0[c] {
c -= 2;
}
if c < n && self.0[c] < self.0[k] {
self.0.swap(k, c);
k = c;
} else {
break
}
}
} else { // max heap
while 2 * k + 2 < n {
c = 2 * k + 4;
if n <= c || self.0[c] < self.0[c-2] {
c -= 2;
}
if c < n && self.0[k] < self.0[c] {
self.0.swap(k, c);
k = c;
} else {
break
}
}
}
k
}
fn up(&mut self, mut k: usize, root: usize) {
if (k | 1) < self.0.len() && self.0[k & !1] < self.0[k | 1] {
self.0.swap(k & !1, k | 1);
k ^= 1;
}
let mut p = Self::parent(k);
// max heap
while root < k && self.0[p] < self.0[k] {
self.0.swap(k, p);
k = p;
p = Self::parent(k)
}
// min heap
p |= 1;
while root < k && self.0[k] < self.0[p] {
self.0.swap(k, p);
k = p;
p = Self::parent(k) | 1;
}
}
}
// ------------ DoublePriorityHeap end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
/// 結合性
pub trait Associative: Magma {}
/// マグマ
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
/// 群
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
/// 半環
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
/// 体
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
/// 加法単元
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
/// 乗法単元
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
impl Scan for char {
type Output = char;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().next().unwrap()
}
}
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------