結果

問題 No.20 砂漠のオアシス
ユーザー nebocconebocco
提出日時 2021-03-11 19:23:35
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 16 ms / 5,000 ms
コード長 11,026 bytes
コンパイル時間 13,937 ms
コンパイル使用メモリ 378,832 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-13 07:07:39
合計ジャッジ時間 13,431 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 16 ms
5,248 KB
testcase_06 AC 15 ms
5,248 KB
testcase_07 AC 16 ms
5,248 KB
testcase_08 AC 8 ms
5,248 KB
testcase_09 AC 16 ms
5,248 KB
testcase_10 AC 1 ms
5,248 KB
testcase_11 AC 1 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 4 ms
5,248 KB
testcase_17 AC 3 ms
5,248 KB
testcase_18 AC 3 ms
5,248 KB
testcase_19 AC 4 ms
5,248 KB
testcase_20 AC 1 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

fn main() {
	let mut io = IO::new();
    input!{ from io,
		n: usize, hp: i32, o: (Usize1, Usize1),
		c: [[i32; n]; n]
    }
	let dist1 = grid_dijkstra(&c, (0, 0));
	if hp > dist1[n-1][n-1] {
		io.println("YES");
		return;
	} else if o.0 == std::usize::MAX || dist1[o.1][o.0] >= hp {
		io.println("NO");
		return;
	}
	let otog = grid_dijkstra(&c, (o.1, o.0))[n-1][n-1];
    io.println(if (hp - dist1[o.1][o.0]) * 2 > otog { "YES" } else { "NO" });
}

fn grid_dijkstra(g: &[Vec<i32>], st:(usize, usize)) -> Vec<Vec<i32>> {
	let n = g.len();
	let mut dist = vec![vec![std::i32::MAX; n]; n];
	dist[st.0][st.1] = 0;
	let mut que = DoublePriorityHeap::new();
	que.push((0, st));
	while let Some((c, (y, x))) = que.pop_min() {
		if dist[y][x] < c { continue; }
		if y > 0 && dist[y-1][x] > dist[y][x] + g[y-1][x] {
			dist[y-1][x] = dist[y][x] + g[y-1][x];
			que.push((dist[y-1][x], (y-1, x)));
		}
		if x > 0 && dist[y][x-1] > dist[y][x] + g[y][x-1] {
			dist[y][x-1] = dist[y][x] + g[y][x-1];
			que.push((dist[y][x-1], (y, x-1)));
		}
		if y + 1 < n && dist[y+1][x] > dist[y][x] + g[y+1][x] {
			dist[y+1][x] = dist[y][x] + g[y+1][x];
			que.push((dist[y+1][x], (y+1, x)));
		}
		if x + 1 < n && dist[y][x+1] > dist[y][x] + g[y][x+1] {
			dist[y][x+1] = dist[y][x] + g[y][x+1];
			que.push((dist[y][x+1], (y, x+1)));
		}
	}
	dist
}

// ------------ DoublePriorityHeap start ------------

#[derive(Default)]
pub struct DoublePriorityHeap<T: Element + Ord>(Vec<T>);

impl<T: Element + Ord> DoublePriorityHeap<T> {
	pub fn new() -> Self {
		Self(Vec::new())
	}

	pub fn from(vec: &[T]) -> Self {
		let mut l = Self(vec.to_vec());
		l.build();
		l
	}

	pub fn push(&mut self, x: T) {
		self.0.push(x);
		self.up(self.0.len() - 1, 1);
	}

	pub fn pop_min(&mut self) -> Option<T> {
		if self.0.len() < 3 {
			self.0.pop()
		} else {
			let ret = self.0.swap_remove(1);
			let k = self.down(1);
			self.up(k, 1);
			Some(ret)
		}
	}

	pub fn pop_max(&mut self) -> Option<T> {
		if self.0.len() < 2 {
			self.0.pop()
		} else {
			let ret = self.0.swap_remove(0);
			let k = self.down(0);
			self.up(k, 1);
			Some(ret)
		}
	}

	pub fn get_min(&self) -> Option<&T> {
		if self.0.len() < 2 {
			self.0.get(0)
		} else {
			self.0.get(1)
		}
	}

	pub fn get_max(&self) -> Option<&T> {
		self.0.get(0)
	}

	fn build(&mut self) {
		let n = self.0.len();
		for i in (0..n).rev() {
			if i & 1 == 1 && self.0[i-1] < self.0[i] {
				self.0.swap(i-1, i);
			}
			let k = self.down(i);
			self.up(k, i);
		}
	}

	#[inline]
	fn parent(k: usize) -> usize {
		(k >> 1).wrapping_sub(1) & !1
	}

	fn down(&mut self, mut k: usize) -> usize {
		let n = self.0.len();
		let mut c: usize;
		if k & 1 == 1 { // min heap
			while 2 * k + 1 < n {
				c = 2 * k + 3;
				if n <= c || self.0[c-2] < self.0[c] {
					c -= 2;
				}
				if c < n && self.0[c] < self.0[k] {
					self.0.swap(k, c);
					k = c;
				} else {
					break
				}
			}
		} else { // max heap
			while 2 * k + 2 < n {
				c = 2 * k + 4;
				if n <= c || self.0[c] < self.0[c-2] {
					c -= 2;
				}
				if c < n && self.0[k] < self.0[c] {
					self.0.swap(k, c);
					k = c;
				} else {
					break
				}
			}
		}
		k
	}

	fn up(&mut self, mut k: usize, root: usize) {
		if (k | 1) < self.0.len() && self.0[k & !1] < self.0[k | 1] {
			self.0.swap(k & !1, k | 1);
			k ^= 1;
		}
		let mut p = Self::parent(k);
		// max heap
		while root < k && self.0[p] < self.0[k] {
			self.0.swap(k, p);
			k = p;
			p = Self::parent(k)
		}
		// min heap
		p |= 1;
		while root < k && self.0[k] < self.0[p] {
			self.0.swap(k, p);
			k = p;
			p = Self::parent(k) | 1;
		}
	}
}

// ------------ DoublePriorityHeap end ------------

// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;

/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}

/// 結合性
pub trait Associative: Magma {}

/// マグマ
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}

/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}

/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}

pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}

/// 群
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}

pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}

/// 半環
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}

/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}

pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}

/// 体
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}

/// 加法単元
pub trait Zero: Element {
    fn zero() -> Self;
    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }
}

/// 乗法単元
pub trait One: Element {
    fn one() -> Self;
    fn is_one(&self) -> bool {
        *self == Self::one()
    }
}

macro_rules! impl_integer {
    ($($T:ty,)*) => {
        $(
            impl Associative for $T {}

            impl Zero for $T {
                fn zero() -> Self { 0 }
                fn is_zero(&self) -> bool { *self == 0 }
            }

            impl<'a> Zero for &'a $T {
                fn zero() -> Self { &0 }
                fn is_zero(&self) -> bool { *self == &0 }
            }

            impl One for $T {
                fn one() -> Self { 1 }
                fn is_one(&self) -> bool { *self == 1 }
            }

            impl<'a> One for &'a $T {
                fn one() -> Self { &1 }
                fn is_one(&self) -> bool { *self == &1 }
            }
        )*
    };
}

impl_integer! {
    i8, i16, i32, i64, i128, isize,
    u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------



// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};

pub struct IO {
	iter: std::str::SplitAsciiWhitespace<'static>,
	buf: BufWriter<StdoutLock<'static>>,
}

impl IO {
	pub fn new() -> Self {
		let mut input = String::new();
		std::io::stdin().read_to_string(&mut input).unwrap();
		let input = Box::leak(input.into_boxed_str());
		let out = Box::new(stdout());
		IO {
			iter: input.split_ascii_whitespace(),
			buf: BufWriter::new(Box::leak(out).lock()),
		}
	}
	fn scan_str(&mut self) -> &'static str {
		self.iter.next().unwrap()
	}
	pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
		<T as Scan>::scan(self)
	}
	pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
		(0..n).map(|_| self.scan::<T>()).collect()
	}
	pub fn print<T: Print>(&mut self, x: T) {
		<T as Print>::print(self, x);
	}
	pub fn println<T: Print>(&mut self, x: T) {
		self.print(x);
		self.print("\n");
	}
	pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
		if let Some(v) = iter.next() {
			self.print(v);
			for v in iter {
				self.print(delim);
				self.print(v);
			}
		}
		self.print("\n");
	}
	pub fn flush(&mut self) {
		self.buf.flush().unwrap();
	}
}

impl Default for IO {
	fn default() -> Self {
		Self::new()
	}
}

pub trait Scan {
	type Output;
	fn scan(io: &mut IO) -> Self::Output;
}

macro_rules! impl_scan {
	($($t:tt),*) => {
		$(
			impl Scan for $t {
				type Output = Self;
				fn scan(s: &mut IO) -> Self::Output {
					s.scan_str().parse().unwrap()
				}
			}
		)*
	};
}

impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);

impl Scan for char {
	type Output = char;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().chars().next().unwrap()
	}
}

pub enum Bytes {}
impl Scan for Bytes {
	type Output = &'static [u8];
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().as_bytes()
	}
}

pub enum Chars {}
impl Scan for Chars {
	type Output = Vec<char>;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().chars().collect()
	}
}

pub enum Usize1 {}
impl Scan for Usize1 {
	type Output = usize;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan::<usize>().wrapping_sub(1)
	}
}

impl<T: Scan, U: Scan> Scan for (T, U) {
	type Output = (T::Output, U::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s))
	}
}

impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
	type Output = (T::Output, U::Output, V::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s), V::scan(s))
	}
}

impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
	type Output = (T::Output, U::Output, V::Output, W::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
	}
}

pub trait Print {
	fn print(w: &mut IO, x: Self);
}

macro_rules! impl_print_int {
	($($t:ty),*) => {
		$(
			impl Print for $t {
				fn print(w: &mut IO, x: Self) {
					w.buf.write_all(x.to_string().as_bytes()).unwrap();
				}
			}
		)*
	};
}

impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);

impl Print for u8 {
	fn print(w: &mut IO, x: Self) {
		w.buf.write_all(&[x]).unwrap();
	}
}

impl Print for &[u8] {
	fn print(w: &mut IO, x: Self) {
		w.buf.write_all(x).unwrap();
	}
}

impl Print for &str {
	fn print(w: &mut IO, x: Self) {
		w.print(x.as_bytes());
	}
}

impl Print for String {
	fn print(w: &mut IO, x: Self) {
		w.print(x.as_bytes());
	}
}

impl<T: Print, U: Print> Print for (T, U) {
	fn print(w: &mut IO, (x, y): Self) {
		w.print(x);
		w.print(" ");
		w.print(y);
	}
}

impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
	fn print(w: &mut IO, (x, y, z): Self) {
		w.print(x);
		w.print(" ");
		w.print(y);
		w.print(" ");
		w.print(z);
	}
}

mod neboccoio_macro {
	#[macro_export]
	macro_rules! input {
		(@start $io:tt @read @rest) => {};

		(@start $io:tt @read @rest, $($rest: tt)*) => {
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @rest mut $($rest:tt)*) => {
			input!(@start $io @read @mut [mut] @rest $($rest)*)
		};

		(@start $io:tt @read @rest $($rest:tt)*) => {
			input!(@start $io @read @mut [] @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
			let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
			let $($mut)* $var = $io.scan_vec::<$kind>($len);
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
			let $($mut)* $var = $io.scan::<$kind>();
			input!(@start $io @read @rest $($rest)*)
		};

		(from $io:tt $($rest:tt)*) => {
			input!(@start $io @read @rest $($rest)*)
		};
	}
}

// ------------ io module end ------------
0