結果
問題 | No.1302 Random Tree Score |
ユーザー | PCTprobability |
提出日時 | 2021-03-11 19:40:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,736 bytes |
コンパイル時間 | 5,052 ms |
コンパイル使用メモリ | 289,196 KB |
実行使用メモリ | 7,160 KB |
最終ジャッジ日時 | 2024-10-13 07:23:03 |
合計ジャッジ時間 | 7,986 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
ソースコード
#include <bits/stdc++.h> #include <unistd.h> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #endif using ll = long long; using ld = long double; #define all(s) (s).begin(),(s).end() #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) #define rever(vec) reverse(vec.begin(), vec.end()) #define sor(vec) sort(vec.begin(), vec.end()) #define fi first #define se second #define P pair<ll,ll> const ll mod = 998244353; //const ll mod = 1000000007; const ll inf = 2000000000000000000ll; static const long double pi = 3.141592653589793; void vcin(vector<ll> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];} void vcout(vector<ll> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;} void YesNo(bool a){if(a){cout<<"Yes"<<endl;}else{cout<<"No"<<endl;}} void YESNO(bool a){if(a){cout<<"YES"<<endl;}else{cout<<"NO"<<endl;}} template<class T,class U> void chmax(T& t,const U& u){if(t<u) t=u;} template<class T,class U> void chmin(T& t,const U& u){if(t>u) t=u;} ll modPow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } enum Mode { FAST = 1, NAIVE = -1, }; template <class T, Mode mode = FAST> struct FormalPowerSeries : std::vector<T> { using std::vector<T>::vector; using std::vector<T>::size; using std::vector<T>::resize; using F = FormalPowerSeries; F &operator+=(const F &g){ for(int i=0;i<int(min((*this).size(),g.size()));i++){ (*this)[i]+=g[i]; } return *this; } F &operator+=(const T &t){ assert(int((*this).size())); (*this)[0]+=t; return *this; } F &operator-=(const F &g) { for(int i=0;i<int(min((*this).size(),g.size()));i++){ (*this)[i]-=g[i]; } return *this; } F &operator-=(const T &t){ assert(int((*this).size())); (*this)[0]-=t; return *this; } F &operator*=(const T &g) { for(int i=0;i<int((*this).size());i++){ (*this)[i]*=g; } return *this; } F &operator/=(const T &g) { T div=g.inv(); for(int i=0;i<int((*this).size());i++){ (*this)[i]*=div; } return *this; } F &operator>>=(const int sz) const { assert(sz >= 0); int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + std::min(sz, n)); (*this).resize(n); return *this; } F &operator<<=(const int sz) const { assert(sz >= 0); int n = (*this).size(); (*this).insert((*this).begin(), (*this).begin() + sz, 0); (*this).resize(n); return *this; } F &operator=(const std::vector<T> &v) { int n = (*this).size(); for(int i = 0; i < n; ++i) (*this)[i] = v[i]; return *this; } F operator-() const { F ret = *this; return ret * -1; } F &operator*=(const F &g) { if(mode==FAST) { int n=(*this).size(); auto tmp=atcoder::convolution(*this,g); for(int i=0;i<n;++i){ (*this)[i]=tmp[i]; } return *this; } else{ int n = (*this).size(), m = g.size(); for(int i = n - 1; i >= 0; --i) { (*this)[i] *= g[0]; for(int j = 1; j < std::min(i + 1, m); j++) (*this)[i] += (*this)[i - j] * g[j]; } return *this; } } F &operator/=(const F &g) { if(mode == FAST){ int n = (*this).size(); (*this) = atcoder::convolution(*this, g.inv()); return *this; } else{ assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); for(int i = 0; i < n; ++i) { for(int j = 1; j < std::min(i + 1, m); ++j) (*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } } F &operator%=(const F &g) { return *this-=*this/g*g; } F operator*(const T &g) const { return F(*this)*=g;} F operator-(const T &g) const { return F(*this)-=g;} F operator*(const F &g) const { return F(*this)*=g;} F operator-(const F &g) const { return F(*this)-=g;} F operator+(const F &g) const { return F(*this)+=g;} F operator/(const F &g) const { return F(*this)/=g;} F operator%(const F &g) const { return F(*this)%=g;} F operator<<(const int d) const { return F(*this)<<=d;} F operator>>(const int d) const { return F(*this)>>=d;} T eval(const T &t) const { int n = (*this).size(); T res = 0, tmp = 1; for(int i = 0; i < n; ++i){ res += (*this)[i] * tmp, tmp *= t; } return res; } F inv(int deg = -1) const { int n = (*this).size(); assert(mode == FAST and n and (*this)[0] != 0); if(deg == -1) deg = n; assert(deg > 0); F res{(*this)[0].inv()}; while(int(res.size()) < deg) { int m = res.size(); F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res); f.resize(m * 2), atcoder::internal::butterfly(f); r.resize(m * 2), atcoder::internal::butterfly(r); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(m * 2), atcoder::internal::butterfly(f); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); T iz = T(m * 2).inv(); iz *= -iz; for(int i = 0; i < m; ++i) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } res.resize(deg); return res; } F &diff_inplace() { int n = (*this).size(); for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i; (*this)[n - 1] = 0; return *this; } F diff() const { F(*this).diff_inplace();} F &integral_inplace() { int n = (*this).size(), mod = T::mod(); std::vector<T> inv(n); { inv[1] = 1; for(int i = 2; i < n; ++i) inv[i] = T(mod) - inv[mod % i] * (mod / i); } for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1]; (*this)[0] = 0; return *this; } F integral() const { return F(*this).integral_inplace(); } F &log_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 1); F f_inv = (*this).inv(); (*this).diff_inplace(); (*this) *= f_inv; (*this).integral_inplace(); return *this; } F log() const { return F(*this).log_inplace(); } F &deriv_inplace() { int n = (*this).size(); assert(n); for(int i = 2; i < n; ++i) (*this)[i] *= i; (*this).erase((*this).begin()); (*this).push_back(0); return *this; } F deriv() const { return F(*this).deriv_inplace(); } F &exp_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 0); F g{1}; (*this)[0] = 1; F h_drv((*this).deriv()); for(int m = 1; m < n; m *= 2) { F f((*this).begin(), (*this).begin() + m); f.resize(2 * m), atcoder::internal::butterfly(f); auto mult_f = [&](F &p) { p.resize(2 * m); atcoder::internal::butterfly(p); for(int i = 0; i < 2 * m; ++i) p[i] *= f[i]; atcoder::internal::butterfly_inv(p); p /= 2 * m; }; if(m > 1) { F g_(g); g_.resize(2 * m), atcoder::internal::butterfly(g_); for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i]; atcoder::internal::butterfly_inv(g_); T iz = T(-2 * m).inv(); g_ *= iz; g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m); } F t((*this).begin(), (*this).begin() + m); t.deriv_inplace(); { F r{h_drv.begin(), h_drv.begin() + m - 1}; mult_f(r); for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i]; } t.insert(t.begin(), t.back()); t.pop_back(); t *= g; F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m)); v.resize(m); t.insert(t.begin(), m - 1, 0); t.push_back(0); t.integral_inplace(); for(int i = 0; i < m; ++i) v[i] -= t[m + i]; mult_f(v); for(int i = 0; i < std::min(n - m, m); ++i) (*this)[m + i] = v[i]; } return *this; } F exp() const { return F(*this).exp_inplace(); } F &pow_inplace(long long k) { int n = (*this).size(), l = 0; assert(k >= 0); if(!k){ for(int i = 0; i < n; ++i) (*this)[i] = !i; return *this; } while(l < n and (*this)[l] == 0) ++l; if(l > (n - 1) / k or l == n) return *this = F(n); T c = (*this)[l]; (*this).erase((*this).begin(), (*this).begin() + l); (*this) /= c; (*this).log_inplace(); (*this).resize(n - l * k); (*this) *= k; (*this).exp_inplace(); (*this) *= c.pow(k); (*this).insert((*this).begin(), l * k, 0); return *this; } F pow(const long long k) const { return F(*this).pow_inplace(); } }; using fps = FormalPowerSeries<atcoder::modint998244353, FAST>; using mint = modint998244353; int main() { /* mod は 1e9+7 */ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(20); ll n; cin>>n; fps f(n-1); mint k=1; for(int i=0;i<n-1;i++){ f[i]=mint(i+1)/mint(k); k*=(i+1); cout<<f[i].val()<<endl; } f=f.pow_inplace(n); k/=(n-1); mint ans=f[n-2]*k*modPow(modPow(n,n-2,mod),mod-2,mod); cout<<ans.val()<<endl; }