結果
問題 | No.1419 Power Moves |
ユーザー | kkishi |
提出日時 | 2021-03-11 23:54:24 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 14 ms / 2,000 ms |
コード長 | 10,659 bytes |
コンパイル時間 | 5,189 ms |
コンパイル使用メモリ | 165,744 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-13 10:44:49 |
合計ジャッジ時間 | 7,593 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 9 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 12 ms
5,248 KB |
testcase_13 | AC | 11 ms
5,248 KB |
testcase_14 | AC | 12 ms
5,248 KB |
testcase_15 | AC | 12 ms
5,248 KB |
testcase_16 | AC | 11 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
testcase_20 | AC | 10 ms
5,248 KB |
testcase_21 | AC | 13 ms
5,248 KB |
testcase_22 | AC | 11 ms
5,248 KB |
testcase_23 | AC | 10 ms
5,248 KB |
testcase_24 | AC | 10 ms
5,248 KB |
testcase_25 | AC | 10 ms
5,248 KB |
testcase_26 | AC | 14 ms
5,248 KB |
testcase_27 | AC | 11 ms
5,248 KB |
testcase_28 | AC | 10 ms
5,248 KB |
testcase_29 | AC | 11 ms
5,248 KB |
testcase_30 | AC | 14 ms
5,248 KB |
testcase_31 | AC | 13 ms
5,248 KB |
testcase_32 | AC | 10 ms
5,248 KB |
testcase_33 | AC | 10 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> namespace { using i32 = int32_t; using i64 = int64_t; } // namespace #define BIN_OPS(F) F(+) F(-) F(*) F(/) #define CMP_OPS(F) F(!=) F(<) F(<=) F(==) F(>) F(>=) template <i32 Mod = 1000000007> class ModInt { public: ModInt() : n_(0) {} ModInt(i64 n) : n_(n % Mod) { if (n_ < 0) { // In C++, (-n)%m == -(n%m). n_ += Mod; } } ModInt& operator+=(const ModInt& m) { n_ += m.n_; if (n_ >= Mod) { n_ -= Mod; } return *this; } ModInt& operator++() { return (*this) += 1; } ModInt& operator-=(const ModInt& m) { n_ -= m.n_; if (n_ < 0) { n_ += Mod; } return *this; } ModInt& operator--() { return (*this) -= 1; } ModInt& operator*=(const ModInt& m) { n_ = i64(n_) * m.n_ % Mod; return *this; } ModInt& operator/=(const ModInt& m) { *this *= m.Inv(); return *this; } #define DEFINE(op) \ ModInt operator op(const ModInt& m) const { return ModInt(*this) op## = m; } BIN_OPS(DEFINE) #undef DEFINE #define DEFINE(op) \ bool operator op(const ModInt& m) const { return n_ op m.n_; } CMP_OPS(DEFINE) #undef DEFINE ModInt operator-() const { return ModInt(-n_); } ModInt Pow(i64 n) const { if (n < 0) { return Inv().Pow(-n); } // a * b ^ n = answer. ModInt a = 1, b = *this; while (n != 0) { if (n & 1) { a *= b; } n /= 2; b *= b; } return a; } ModInt Inv() const { #if DEBUG assert(n_ != 0); #endif if (n_ > kMaxCacheSize) { // Compute the inverse based on Fermat's little theorem. Note that this // only works when n_ and Mod are relatively prime. The theorem says that // n_^(Mod-1) = 1 (mod Mod). So we can compute n_^(Mod-2). return Pow(Mod - 2); } for (i64 i = inv_.size(); i <= n_; ++i) { inv_.push_back(i <= 1 ? i : (Mod / i * -inv_[Mod % i])); } return inv_[n_]; } i64 value() const { return n_; } static ModInt Fact(i64 n) { for (i64 i = fact_.size(); i <= n; ++i) { fact_.push_back(i == 0 ? 1 : fact_.back() * i); } return fact_[n]; } static ModInt InvFact(i64 n) { for (i64 i = inv_fact_.size(); i <= n; ++i) { inv_fact_.push_back(i == 0 ? 1 : inv_fact_.back() / i); } return inv_fact_[n]; } static ModInt Comb(i64 n, i64 k) { return Perm(n, k) * InvFact(k); } static ModInt CombSlow(i64 n, i64 k) { return PermSlow(n, k) * InvFact(k); } static ModInt Perm(i64 n, i64 k) { #if DEBUG assert(n <= kMaxCacheSize && "n is too large. If k is small, consider using PermSlow."); #endif return Fact(n) * InvFact(n - k); } static ModInt PermSlow(i64 n, i64 k) { ModInt p = 1; for (i64 i = 0; i < k; ++i) { p *= (n - i); } return p; } private: i32 n_; inline static std::vector<ModInt> fact_; inline static std::vector<ModInt> inv_fact_; inline static std::vector<ModInt> inv_; static const i64 kMaxCacheSize = 1000000; }; #define DEFINE(op) \ template <i32 Mod, typename T> \ ModInt<Mod> operator op(const T& t, const ModInt<Mod>& m) { \ return ModInt<Mod>(t) op m; \ } BIN_OPS(DEFINE) CMP_OPS(DEFINE) #undef DEFINE template <i32 Mod> std::ostream& operator<<(std::ostream& out, const ModInt<Mod>& m) { out << m.value(); return out; } #include <boost/hana/functional/fix.hpp> template <typename T, typename = void> struct is_dereferenceable : std::false_type {}; template <typename T> struct is_dereferenceable<T, std::void_t<decltype(*std::declval<T>())>> : std::true_type {}; template <typename T, typename = void> struct is_iterable : std::false_type {}; template <typename T> struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())), decltype(std::end(std::declval<T>()))>> : std::true_type {}; template <typename T, typename = void> struct is_applicable : std::false_type {}; template <typename T> struct is_applicable<T, std::void_t<decltype(std::tuple_size<T>::value)>> : std::true_type {}; template <typename T, typename... Ts> void debug(const T& value, const Ts&... args); template <typename T> void debug(const T& v) { if constexpr (is_dereferenceable<T>::value) { std::cerr << "{"; if (v) { debug(*v); } else { std::cerr << "nil"; } std::cerr << "}"; } else if constexpr (is_iterable<T>::value && !std::is_same<T, std::string>::value) { std::cerr << "{"; for (auto it = std::begin(v); it != std::end(v); ++it) { if (it != std::begin(v)) std::cerr << ", "; debug(*it); } std::cerr << "}"; } else if constexpr (is_applicable<T>::value) { std::cerr << "{"; std::apply([](const auto&... args) { debug(args...); }, v); std::cerr << "}"; } else { std::cerr << v; } } template <typename T, typename... Ts> void debug(const T& value, const Ts&... args) { debug(value); std::cerr << ", "; debug(args...); } #if DEBUG #define dbg(...) \ do { \ cerr << #__VA_ARGS__ << ": "; \ debug(__VA_ARGS__); \ cerr << " (L" << __LINE__ << ")\n"; \ } while (0) #else #define dbg(...) #endif void read_from_cin() {} template <typename T, typename... Ts> void read_from_cin(T& value, Ts&... args) { std::cin >> value; read_from_cin(args...); } #define rd(type, ...) \ type __VA_ARGS__; \ read_from_cin(__VA_ARGS__); #define ints(...) rd(int, __VA_ARGS__); #define strings(...) rd(string, __VA_ARGS__); template <typename T> void write_to_cout(const T& value) { if constexpr (std::is_same<T, bool>::value) { std::cout << (value ? "Yes" : "No"); } else if constexpr (is_iterable<T>::value && !std::is_same<T, std::string>::value) { for (auto it = std::begin(value); it != std::end(value); ++it) { if (it != std::begin(value)) std::cout << " "; std::cout << *it; } } else { std::cout << value; } } template <typename T, typename... Ts> void write_to_cout(const T& value, const Ts&... args) { write_to_cout(value); std::cout << ' '; write_to_cout(args...); } #define wt(...) \ do { \ write_to_cout(__VA_ARGS__); \ cout << '\n'; \ } while (0) #define all(x) (x).begin(), (x).end() #define eb(...) emplace_back(__VA_ARGS__) #define pb(...) push_back(__VA_ARGS__) #define dispatch(_1, _2, _3, name, ...) name #define as_i64(x) \ ( \ [] { \ static_assert( \ std::is_integral< \ typename std::remove_reference<decltype(x)>::type>::value, \ "rep macro supports std integral types only"); \ }, \ static_cast<std::int64_t>(x)) #define rep3(i, a, b) for (std::int64_t i = as_i64(a); i < as_i64(b); ++i) #define rep2(i, n) rep3(i, 0, n) #define rep1(n) rep2(_loop_variable_, n) #define rep(...) dispatch(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define rrep3(i, a, b) for (std::int64_t i = as_i64(b) - 1; i >= as_i64(a); --i) #define rrep2(i, n) rrep3(i, 0, n) #define rrep1(n) rrep2(_loop_variable_, n) #define rrep(...) dispatch(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__) #define each3(k, v, c) for (auto&& [k, v] : c) #define each2(e, c) for (auto&& e : c) #define each(...) dispatch(__VA_ARGS__, each3, each2)(__VA_ARGS__) template <typename T> std::istream& operator>>(std::istream& is, std::vector<T>& v) { for (T& vi : v) is >> vi; return is; } template <typename T, typename U> std::istream& operator>>(std::istream& is, std::pair<T, U>& p) { is >> p.first >> p.second; return is; } template <typename T, typename U> bool chmax(T& a, U b) { if (a < b) { a = b; return true; } return false; } template <typename T, typename U> bool chmin(T& a, U b) { if (a > b) { a = b; return true; } return false; } template <typename T, typename U> auto max(T a, U b) { return a > b ? a : b; } template <typename T, typename U> auto min(T a, U b) { return a < b ? a : b; } template <typename T> std::int64_t sz(const T& v) { return std::size(v); } template <typename T> std::int64_t popcount(T i) { return std::bitset<std::numeric_limits<T>::digits>(i).count(); } template <typename T> bool hasbit(T s, int i) { return std::bitset<std::numeric_limits<T>::digits>(s)[i]; } template <typename T, typename U> auto div_floor(T n, U d) { if (d < 0) { n = -n; d = -d; } if (n < 0) { return -((-n + d - 1) / d); } return n / d; }; template <typename T, typename U> auto div_ceil(T n, U d) { if (d < 0) { n = -n; d = -d; } if (n < 0) { return -(-n / d); } return (n + d - 1) / d; } template <typename T> bool even(T x) { return x % 2 == 0; } const std::int64_t big = std::numeric_limits<std::int64_t>::max() / 4; using i64 = std::int64_t; using i32 = std::int32_t; template <typename T> using low_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <typename T> using V = std::vector<T>; template <typename T> using VV = V<V<T>>; void Main(); int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); std::cout << std::fixed << std::setprecision(20); Main(); return 0; } const auto& Fix = boost::hana::fix; using namespace std; #define int i64 using mint = ModInt<>; int rem(int n, int k) { if (k == 0) return 1; if (even(k)) { int r = rem(n, k / 2); return r * r % n; } return rem(n, k - 1) * 2 % n; } V<mint> Solve(int n, int k) { dbg(rem(n, k)); int r = (rem(n, k) - 1 + n) % n; // (2^k - 1) % n dbg(n, k, r); mint x = mint(2).Pow(k); mint y = (x - r - 1) / n; dbg(x, y); V<mint> ans(n); for (int i = 1; i < n; i += 2) ans[i] = y; for (int i = 1; i <= r; i += 2) ans[i] += 1; return ans; } void Main() { ints(n, k); V<mint> x; if (!even(n)) { V<mint> y = Solve(n * 2, k); dbg(y); x.resize(n); rep(i, n) x[i] = y[i] + y[n + i]; dbg(x); } else { x = Solve(n, k); } V<mint> ans(n); rep(i, n) ans[i] = x[i] + x[(n - i) % n]; mint t = 1 / mint(2).Pow(k); rep(i, n) wt(ans[i] * t); }