結果
問題 | No.1424 Ultrapalindrome |
ユーザー | hirono999 |
提出日時 | 2021-03-12 22:11:44 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,143 bytes |
コンパイル時間 | 4,733 ms |
コンパイル使用メモリ | 261,004 KB |
実行使用メモリ | 25,344 KB |
最終ジャッジ日時 | 2024-10-14 12:40:54 |
合計ジャッジ時間 | 6,442 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | WA | - |
testcase_09 | AC | 57 ms
11,136 KB |
testcase_10 | AC | 61 ms
11,392 KB |
testcase_11 | AC | 34 ms
8,960 KB |
testcase_12 | AC | 49 ms
10,880 KB |
testcase_13 | AC | 12 ms
5,376 KB |
testcase_14 | AC | 36 ms
9,344 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 28 ms
8,064 KB |
testcase_17 | AC | 37 ms
9,088 KB |
testcase_18 | AC | 21 ms
7,488 KB |
testcase_19 | AC | 36 ms
9,344 KB |
testcase_20 | AC | 9 ms
5,248 KB |
testcase_21 | AC | 28 ms
8,448 KB |
testcase_22 | AC | 18 ms
6,272 KB |
testcase_23 | AC | 5 ms
5,248 KB |
testcase_24 | AC | 8 ms
5,248 KB |
testcase_25 | AC | 8 ms
5,248 KB |
testcase_26 | AC | 47 ms
10,624 KB |
testcase_27 | WA | - |
testcase_28 | AC | 52 ms
25,344 KB |
testcase_29 | AC | 51 ms
25,344 KB |
testcase_30 | AC | 37 ms
15,020 KB |
testcase_31 | WA | - |
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> constexpr long long INF = 1LL << 60; double PI = acos(-1.0); #define rep(i, n) for (ll i = 0; i < (n); ++i) #define rep1(i, n) for (ll i = 1; i <= (n); ++i) #define rrep(i, n) for (ll i = (n - 1); i >= 0; --i) #define perm(c) sort(ALL(c));for(bool c##p=1;c##p;c##p=next_permutation(ALL(c))) #define ALL(obj) (obj).begin(), (obj).end() #define RALL(obj) (obj).rbegin(), (obj).rend() #define pb push_back #define to_s to_string #define len(v) (ll)v.size() #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) #define print(x) cout << (x) << '\n' #define drop(x) cout << (x) << '\n', exit(0) #define debug(x) cout << #x << ": " << (x) << '\n' using namespace std; typedef long long ll; typedef unsigned long long ull; typedef long double ld; typedef pair<ll, ll> P; typedef tuple<ll, ll, ll> tpl; typedef vector<ll> vec; typedef vector<vector<ll>> vec2; typedef vector<vector<vector<ll>>> vec3; template<class S, class T> inline bool chmax(S &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class S, class T> inline bool chmin(S &a, const T &b) { if (b<a) { a=b; return 1; } return 0; } inline ll msb(ll v) { return 1LL << (63 - __builtin_clzll(v)); } inline ll devc(ll x, ll y) { return ceil(ld(x) / y); } inline ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } inline ll lcm(ll a, ll b) { return a * (b / gcd(a, b)); } struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator << (ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator >> (istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T1, typename T2, typename T3 > ostream &operator << (ostream &os, const tuple< T1, T2, T3 > &t) { os << get<0>(t) << " " << get<1>(t) << " " << get<2>(t); return os; } template< typename T1, typename T2, typename T3 > istream &operator >> (istream &is, tuple< T1, T2, T3 > &t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template< typename T > ostream &operator << (ostream &os, const vector< T > &v){ for (int i = 0; i < (int)v.size(); ++i) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator >> (istream &is, vector< T > &v){ for(T &in : v) is >> in; return is; } template< typename T > ostream &operator << (ostream &os, const set< T > &st){ int ct = 0; for(auto& s : st) cout << s << (++ct != st.size() ? " " : ""); return os; } template <typename T> constexpr set<T> &operator|= (set<T> &st1, const set<T> &st2) { for(auto& s : st2) st1.insert(s); return st1; } template <typename T> constexpr set<T> &operator-= (set<T> &st1, const set<T> &st2) { for(auto& s : st2) if(st1.count(s)) st1.erase(s); return st1; } template <typename T> constexpr set<T> &operator&= (set<T> &st1, const set<T> &st2) { auto itr = st1.begin(); while(itr != st1.end()){ if(!st2.count(*itr)) itr = st1.erase(itr); else ++itr; } return st1; } template <typename T> constexpr set<T> operator| (const set<T> &st1, const set<T> &st2) { set<T> res = st1; res |= st2; return res; } template <typename T> constexpr set<T> operator- (const set<T> &st1, const set<T> &st2) { set<T> res = st1; res -= st2; return res; } template <typename T> constexpr set<T> operator& (const set<T> &st1, const set<T> &st2) { set<T> res = st1; res &= st2; return res; } /*--------------------------------- Tools ------------------------------------------*/ template< typename T > vector<T> cumsum(const vector<T> &X){ vector<T> res(X.size() + 1, 0); for(int i = 0; i < X.size(); ++i) res[i + 1] += res[i] + X[i]; return res; } template< typename S, typename T, typename F> pair<T, T> bisearch(S left, T right, F f) { while(abs(right - left) > 1){ T mid = (right + left) / 2; if(f(mid)) right = mid; else left = mid; } return {left, right}; } template< typename S, typename T, typename F> double trisearch(S left, T right, F f, int maxLoop = 90){ double low = left, high = right; while(maxLoop--){ double mid_left = high / 3 + low * 2 / 3; double mid_right = high * 2 / 3 + low / 3; if(f(mid_left) >= f(mid_right)) low = mid_left; else high = mid_right; } return (low + high) * 0.5; } template< typename F > ll findMinimum(ll L, ll R, F f) { //[L, R) ll lo = L - 1, hi = R - 1; while (lo + 1 != hi) { ll mi = (lo + hi) / 2; if (f(mi) <= f(mi + 1)) hi = mi; else lo = mi; } return hi; } /*--------------------------------- Graph ------------------------------------------*/ struct Graph { struct Edge { ll from, to, weight; Edge() : from(0), to(0), weight(0) {} Edge(ll f, ll t, ll w) : from(f), to(t), weight(w) {} }; using Edges = vector<Edge>; vector<Edges> G; Graph() : G() {}; Graph(int N) : G(N) {} Edges operator[](int k) const{ return G[k]; } ll size() const{ return G.size(); } void resize(int N){ G.resize(N); } void add_edge(int a, int b, ll w = 1){ G[a].emplace_back(a, b, w); G[b].emplace_back(b, a, w); } void add_arrow(int a, int b, ll w = 1){ G[a].emplace_back(a, b, w); } //Topological_sort //!!return empty, if not DAG vector<ll> topological_sort() const; //Dijkstra and related vector<ll> dijkstra(ll s, bool restore = false) const; vector<ll> shortest_path(ll start, ll goal) const; //Bellman-Ford //!!return empty, if negative loop exists vector<ll> bellman_ford(ll s) const; //Warshall-Floyd vector<vector<ll>> Warshall_Floyd() const; //Kruskal //!!Required UnionFind Graph Kruskal() const; //Tree Algorithms //Tree centroid vector<ll> treeCentroid() const; }; vector<ll> Graph::dijkstra(ll s, bool restore) const{ vector<ll> dist(G.size(), INF); priority_queue<pair<ll, ll>, vector<pair<ll, ll>>, greater<pair<ll, ll>>> que; dist[s] = 0; que.emplace(dist[s], s); vector<ll> prev(G.size(), -1); while(!que.empty()){ ll cost, idx; tie(cost, idx) = que.top(); que.pop(); if(dist[idx] < cost) continue; for(auto &e : G[idx]){ auto next_cost = cost + e.weight; if(dist[e.to] <= next_cost) continue; dist[e.to] = next_cost; if(restore) prev[e.to] = e.from; que.emplace(dist[e.to], e.to); } } if(restore) return prev; return dist; } vector<ll> Graph::shortest_path(ll start, ll goal) const{ vector<ll> prev = dijkstra(start, true); vector<ll> path; for (int cur = goal; cur != -1; cur = prev[cur]) path.push_back(cur); reverse(path.begin(), path.end()); if (path.front() != start) return {}; return path; } vector<ll> Graph::bellman_ford(ll s) const{ vector<ll> dist(G.size(), INF); dist[s] = 0; for (ll i = 0; i < G.size(); ++i) { for (ll j = 0; j < G.size(); ++j){ for (auto& e : G[j]) { if(dist[e.from] == INF) continue; bool res = chmin(dist[e.to], dist[e.from] + e.weight); if (i == G.size() - 1 and res) return {}; } } } return dist; } vector<vector<ll>> Graph::Warshall_Floyd() const { int N = G.size(); vector<vector<ll>> d(N, vector<ll>(N)); rep(i, N) rep(j, N) { if (i == j) d[i][j] = 0; else d[i][j] = INF; } rep(i, N) for (auto &e : G[i]) d[i][e.to] = e.weight; rep(k, N) rep(i, N) rep(j, N) { if (d[i][k] == INF or d[k][j] == INF) continue; d[i][j] = min(d[i][j], d[i][k]+d[k][j]); } return d; } vector<ll> Graph::topological_sort() const{ vector<ll> ans; int N = G.size(); vector<int> ind(N); rep(i, N) for (auto &e : G[i]) ind[e.to]++; queue<int> que; rep(i, N) if (!ind[i]) que.push(i); while(!que.empty()){ int now = que.front(); ans.pb(now); que.pop(); for(auto& e : G[now]) { ind [e.to]--; if(!ind[e.to]) que.push(e.to); } } if (ans.size() != N) return {}; return ans; } vector<ll> Graph::treeCentroid() const{ int N = G.size(); vector<ll> centroid, val(N); auto dfs = [&](auto&& self, int cur, int par)->void { bool is_centroid = true; val[cur] = 1; for(auto &e : G[cur]){ if(e.to == par) continue; self(self, e.to, cur); val[cur] += val[e.to]; if(val[e.to] > N / 2) is_centroid = false; } if(N - val[cur] > N / 2) is_centroid = false; if(is_centroid) centroid.push_back(cur); }; dfs(dfs, 0, -1); return centroid; } // #include <atcoder/all> // using namespace atcoder; constexpr long long MOD = 1000000007; /*------------------------------- Main Code Here -----------------------------------------*/ int main() { ll N; cin >> N; vector<P> X(N - 1); cin >> X; Graph G(N); for(auto [a, b] : X){ --a, --b; G.add_edge(a, b); } ll root = -1; rep(i, N) if(len(G[i]) == 1) root = i; set<ll> st; ll leaf = 0; auto dfs = [&](auto &&self, ll d, ll cur, ll par = -1, ll f = -1)->void { bool is_leaf = true; for(auto e : G[cur]){ if(e.to == par) continue; if(e.to == f) continue; self(self, d + 1, e.to, e.from); is_leaf = false; } if(is_leaf) st.insert(d), ++leaf; }; dfs(dfs, 0, root); print(len(st) == 1 ? "Yes" : "No"); return 0; }