結果
| 問題 |
No.833 かっこいい電車
|
| コンテスト | |
| ユーザー |
👑 Kazun
|
| 提出日時 | 2021-03-13 04:24:10 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 701 ms / 2,000 ms |
| コード長 | 8,836 bytes |
| コンパイル時間 | 167 ms |
| コンパイル使用メモリ | 82,688 KB |
| 実行使用メモリ | 114,048 KB |
| 最終ジャッジ日時 | 2024-10-14 16:55:07 |
| 合計ジャッジ時間 | 13,042 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 30 |
ソースコード
class Lazy_Evaluation_Tree():
def __init__(self,L,calc,unit,op,comp,id,index):
"""calcを演算,opを作用とするリストLのSegment Treeを作成
calc:演算
unit:モノイドcalcの単位元 (xe=ex=xを満たすe)
op:作用素
comp:作用素の合成
id:恒等写像
[条件] M:Monoid,F={f:F x M→ M:作用素}に対して,以下が成立する.
Fは恒等写像 id を含む.つまり,任意の x in M に対して id(x)=x
Fは写像の合成に閉じている.つまり,任意の f,g in F に対して, comp(f,g) in F
任意の f in F, x,y in M に対して,f(xy)=f(x)f(y)である.
[注記]
作用素は左から掛ける.更新も左から.
"""
self.calc=calc
self.unit=unit
self.op=op
self.comp=comp
self.id=id
self.index=index
N=len(L)
d=max(1,(N-1).bit_length())
k=1<<d
self.data=[unit]*k+L+[unit]*(k-len(L))
self.lazy=[self.id]*(2*k)
self.N=k
self.depth=d
for i in range(k-1,0,-1):
self.data[i]=calc(self.data[i<<1],self.data[i<<1|1])
def _eval_at(self,m):
if self.lazy[m]==self.id:
return self.data[m]
return self.op(self.lazy[m],self.data[m])
#配列の第m要素を下に伝搬
def _propagate_at(self,m):
self.data[m]=self._eval_at(m)
if m<self.N and self.lazy[m]!=self.id:
self.lazy[m<<1]=self.comp(
self.lazy[m],
self.lazy[m<<1]
)
self.lazy[m<<1|1]=self.comp(
self.lazy[m],
self.lazy[m<<1|1]
)
self.lazy[m]=self.id
#配列の第m要素より上を全て伝搬
def _propagate_above(self,m):
H=m.bit_length()
for h in range(H-1,0,-1):
self._propagate_at(m>>h)
#配列の第m要素より上を全て再計算
def _recalc_above(self,m):
while m>1:
m>>=1
self.data[m]=self.calc(
self._eval_at(m<<1),
self._eval_at(m<<1|1)
)
def get(self,k):
index=self.index
m=k-index+self.N
self._propagate_above(m)
self.data[m]=self._eval_at(m)
self.lazy[m]=self.id
return self.data[m]
#作用
def operate(self,From,To,alpha,left_closed=True,right_closed=True):
index=self.index
L=(From-index)+self.N+(not left_closed)
R=(To-index)+self.N+(right_closed)
L0=R0=-1
X,Y=L,R-1
while X<Y:
if X&1:
L0=max(L0,X)
X+=1
if Y&1==0:
R0=max(R0,Y)
Y-=1
X>>=1
Y>>=1
L0=max(L0,X)
R0=max(R0,Y)
self._propagate_above(L0)
self._propagate_above(R0)
while L<R:
if L&1:
self.lazy[L]=self.comp(alpha,self.lazy[L])
L+=1
if R&1:
R-=1
self.lazy[R]=self.comp(alpha,self.lazy[R])
L>>=1
R>>=1
self._recalc_above(L0)
self._recalc_above(R0)
def update(self,k,x):
""" 第k要素をxに変更する.
"""
index=self.index
m=k-index+self.N
self._propagate_above(m)
self.data[m]=x
self.lazy[m]=self.id
self._recalc_above(m)
def product(self,From,To,left_closed=True,right_closed=True):
index=self.index
L=(From-index)+self.N+(not left_closed)
R=(To-index)+self.N+(right_closed)
L0=R0=-1
X,Y=L,R-1
while X<Y:
if X&1:
L0=max(L0,X)
X+=1
if Y&1==0:
R0=max(R0,Y)
Y-=1
X>>=1
Y>>=1
L0=max(L0,X)
R0=max(R0,Y)
self._propagate_above(L0)
self._propagate_above(R0)
vL=vR=self.unit
while L<R:
if L&1:
vL=self.calc(vL,self._eval_at(L))
L+=1
if R&1:
R-=1
vR=self.calc(self._eval_at(R),vR)
L>>=1
R>>=1
return self.calc(vL,vR)
def all_product(self):
return self.product(1,self.N,1)
#リフレッシュ
def refresh(self):
for m in range(1,2*self.N):
self.data[m]=self._eval_at(m)
if m<self.N and self.lazy[m]!=self.id:
self.lazy[m<<1]=self.comp(
self.lazy[m],
self.lazy[m<<1]
)
self.lazy[m<<1|1]=self.comp(
self.lazy[m],
self.lazy[m<<1|1]
)
self.lazy[m]=self.id
def __getitem__(self,k):
return self.get(k)
def __setitem__(self,k,x):
self.update(k,x)
class Binary_Indexed_Tree():
def __init__(self,L,calc,unit,inv,index=1):
"""calcを演算とするN項のBinary Indexed Treeを作成
calc:演算(2変数関数,群)
unit:群calcの単位元(xe=ex=xを満たすe)
inv:群calcの逆元(1変数関数)
"""
self.calc=calc
self.unit=unit
self.inv=inv
self.index=index
N=len(L)
d=max(1,(N-1).bit_length())
k=2**d
X=[None]+[unit]*k
self.num=k
self.depth=d
if L:
for i in range(len(L)):
p=i+1
while p<=k:
X[p]=self.calc(X[p],L[i])
p+=p&(-p)
self.data=X
def index_number(self,k,index=1):
"""第k要素の値を出力する.
k:数列の要素
index:先頭の要素の番号
"""
return self.sum(k,k,index)
def add(self,k,x,index=1,right=False):
"""第k要素にxを左から加え,更新を行う.
k:数列の要素
x:更新後の値
index:先頭の要素の番号
right:「左から」が「右から」になる
"""
p=k+(1-index)
while p<=self.num:
if right==False:
#左から
self.data[p]=self.calc(x,self.data[p])
else:
#右から
self.data[p]=self.calc(self.data[p],x)
p+=p&(-p)
def update(self,k,x,index=1,right=False):
"""第k要素をxに変え,更新を行う.
k:数列の要素
x:更新後の値
"""
a=self.index_number(k,index)
if right==False:
#左から
y=self.calc(x,self.inv(a))
else:
#右から
y=self.calc(self.inv(a),x)
self.add(k,y,index,right)
def sum(self,From,To,index=1):
"""第From要素から第To要素までの総和を求める.
※From!=1を使うならば,群でなくてはならない.
From:始まり
To:終わり
index:先頭の要素の番号
"""
alpha=max(1,From+(1-index))
beta=min(self.num,To+(1-index))
if alpha==1:
return self.__section(beta)
else:
return self.calc(self.inv(self.__section(alpha-1)),self.__section(beta))
def __section(self,To):
S=self.unit
x=To
while x>0:
S=self.calc(self.data[x],S)
x-=x&(-x)
return S
def all_sum(self):
return self.data[-1]
def __getitem__(self,index):
if isinstance(index,int):
return self.index_number(index,self.index)
else:
return [self.index_number(t,self.index) for t in index]
def __setitem__(self,index,val):
self.update(index,val,self.index)
#================================================
import sys
from operator import add,neg
input=sys.stdin.readline
write=sys.stdout.write
N,Q=map(int,input().split())
A=list(map(int,input().split()))
L=Lazy_Evaluation_Tree(list(range(1,N+1)),max,0,lambda a,x:a,lambda a,b:a,-1,1)
R=Lazy_Evaluation_Tree(list(range(1,N+1)),max,0,lambda a,x:a,lambda a,b:a,-1,1)
S=Binary_Indexed_Tree(A,add,0,neg,1)
X=[]
Connect=[0]*N
for _ in range(Q):
t,x=map(int,input().split())
if t==1:
if Connect[x]==0:
l=L.get(x)
r=R.get(x+1)
L.operate(l,r,l)
R.operate(l,r,r)
Connect[x]=1
elif t==2:
if Connect[x]==1:
l=L.get(x)
r=R.get(x+1)
R.operate(l,x,x)
L.operate(x+1,r,x+1)
Connect[x]=0
elif t==3:
S.add(x,1,1)
else:
l=L.get(x)
r=R.get(x)
X.append(S.sum(l,r,1))
write("\n".join(map(str,X)))
Kazun