結果

問題 No.470 Inverse S+T Problem
ユーザー zkouzkou
提出日時 2021-03-13 10:37:39
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 112 ms / 2,000 ms
コード長 6,895 bytes
コンパイル時間 281 ms
コンパイル使用メモリ 82,288 KB
実行使用メモリ 79,040 KB
最終ジャッジ日時 2024-12-22 14:04:34
合計ジャッジ時間 3,300 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 40 ms
52,864 KB
testcase_01 AC 42 ms
53,120 KB
testcase_02 AC 40 ms
53,120 KB
testcase_03 AC 41 ms
53,120 KB
testcase_04 AC 40 ms
52,736 KB
testcase_05 AC 41 ms
52,736 KB
testcase_06 AC 112 ms
78,720 KB
testcase_07 AC 108 ms
78,888 KB
testcase_08 AC 109 ms
79,040 KB
testcase_09 AC 41 ms
53,248 KB
testcase_10 AC 44 ms
53,632 KB
testcase_11 AC 50 ms
59,648 KB
testcase_12 AC 41 ms
52,992 KB
testcase_13 AC 43 ms
53,504 KB
testcase_14 AC 49 ms
59,904 KB
testcase_15 AC 44 ms
54,016 KB
testcase_16 AC 43 ms
53,504 KB
testcase_17 AC 42 ms
53,376 KB
testcase_18 AC 41 ms
52,864 KB
testcase_19 AC 45 ms
53,504 KB
testcase_20 AC 41 ms
52,736 KB
testcase_21 AC 47 ms
59,648 KB
testcase_22 AC 47 ms
59,904 KB
testcase_23 AC 48 ms
60,416 KB
testcase_24 AC 48 ms
59,776 KB
testcase_25 AC 47 ms
59,520 KB
testcase_26 AC 48 ms
59,392 KB
testcase_27 AC 46 ms
59,776 KB
testcase_28 AC 70 ms
71,680 KB
testcase_29 AC 62 ms
66,048 KB
testcase_30 AC 66 ms
68,608 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class _csr:
    def __init__(self, n, edges):
        self.start = [0] * (n + 1)
        self.elist = [0] * len(edges)
        for v, _ in edges:
            self.start[v + 1] += 1
        for i in range(1, n + 1):
            self.start[i] += self.start[i - 1]
        counter = self.start.copy()
        for v, e in edges:
            self.elist[counter[v]] = e
            counter[v] += 1


class scc_graph:
    """It calculates the strongly connected components of directed graphs.
    """

    def __init__(self, n):
        """It creates a directed graph with n vertices and 0 edges.

        Constraints
        -----------

        >   0 <= n <= 10 ** 8

        Complexity
        ----------

        >   O(n)
        """
        self.n = n
        self.edges = []

    def add_edge(self, from_, to):
        """It adds a directed edge from the vertex `from_` to the vertex `to`.

        Constraints
        -----------

        >   0 <= from_ < n

        >   0 <= to < n

        Complexity
        ----------

        >   O(1) amortized
        """
        # assert 0 <= from_ < self.n
        # assert 0 <= to < self.n
        self.edges.append((from_, to))

    def _scc_ids(self):
        g = _csr(self.n, self.edges)
        now_ord = 0
        group_num = 0
        visited = []
        low = [0] * self.n
        order = [-1] * self.n
        ids = [0] * self.n
        parent = [-1] * self.n
        stack = []
        for i in range(self.n):
            if order[i] == -1:
                stack.append(i)
                stack.append(i)
                while stack:
                    v = stack.pop()
                    if order[v] == -1:
                        low[v] = order[v] = now_ord
                        now_ord += 1
                        visited.append(v)
                        for i in range(g.start[v], g.start[v + 1]):
                            to = g.elist[i]
                            if order[to] == -1:
                                stack.append(to)
                                stack.append(to)
                                parent[to] = v
                            else:
                                low[v] = min(low[v], order[to])
                    else:
                        if low[v] == order[v]:
                            while True:
                                u = visited.pop()
                                order[u] = self.n
                                ids[u] = group_num
                                if u == v:
                                    break
                            group_num += 1
                        if parent[v] != -1:
                            low[parent[v]] = min(low[parent[v]], low[v])
        for i, x in enumerate(ids):
            ids[i] = group_num - 1 - x
        return group_num, ids

    def scc(self):
        """It returns the list of the "list of the vertices" that satisfies the following.

        >   Each vertex is in exactly one "list of the vertices".

        >   Each "list of the vertices" corresponds to the vertex set of a strongly connected component. 
        The order of the vertices in the list is undefined.

        >   The list of "list of the vertices" are sorted in topological order, 
        i.e., for two vertices u, v in different strongly connected components, 
        if there is a directed path from u to v, 
        the list contains u appears earlier than the list contains v.

        Complexity
        ----------

        >   O(n + m), where m is the number of added edges. 
        """
        group_num, ids = self._scc_ids()
        groups = [[] for _ in range(group_num)]
        for i, x in enumerate(ids):
            groups[x].append(i)
        return groups


class two_sat:
    """It solves 2-SAT.

    For variables x[0], x[1], ..., x[n-1] and clauses with form

    >   ((x[i] = f) or (x[j] = g)),

    it decides whether there is a truth assignment that satisfies all clauses.
    """

    def __init__(self, n):
        """It creates a 2-SAT of n variables and 0 clauses.

        Constraints
        -----------

        >   0 <= n <= 10 ** 8

        Complexity
        ----------

        >   O(n)
        """
        self.n = n
        self._answer = [False] * n
        self.scc = scc_graph(2 * n)

    def add_clause(self, i, f, j, g):
        """It adds a clause ((x[i] = f) or (x[j] = g)).

        Constraints
        -----------

        >   0 <= i < n

        >   0 <= j < n

        Complexity
        ----------

        >   O(1) amortized
        """
        # assert 0 <= i < self.n
        # assert 0 <= j < self.n
        self.scc.add_edge(2 * i + (f == 0), 2 * j + (g == 1))
        self.scc.add_edge(2 * j + (g == 0), 2 * i + (f == 1))

    def satisfiable(self):
        """If there is a truth assignment that satisfies all clauses, it returns `True`. 
        Otherwise, it returns `False`.

        Constraints
        -----------

        >   You may call it multiple times.

        Complexity
        ----------

        >   O(n + m), where m is the number of added clauses.
        """
        _, ids = self.scc._scc_ids()
        for i in range(self.n):
            if ids[2 * i] == ids[2 * i + 1]:
                return False
            self._answer[i] = (ids[2*i] < ids[2*i+1])
        return True

    def answer(self):
        """It returns a truth assignment that satisfies all clauses of the last call of `satisfiable`.
        If we call it before calling `satisfiable` or when the last call of `satisfiable` returns `False`, 
        it returns the list of length n with undefined elements.

        Complexity
        ----------

        >   O(n) 
        """
        return self._answer.copy()


def main():
    N = int(input())
    Us = [input() for _ in range(N)]

    # (52 ** 2 + 52) // 2 = 1378
    # Thus, if N > 1378, then "Impossible"

    if N > 1378:
        print("Impossible")
        return

    ts = two_sat(N)
    for i in range(N):
        Ui = Us[i]
        i_true_1 =  Ui[0]
        i_true_2 =  Ui[1:]
        i_false_1 = Ui[2]
        i_false_2 = Ui[:2]
        for j in range(i + 1, N):
            Uj = Us[j]
            j_true_1 =  Uj[0]
            j_true_2 =  Uj[1:]
            j_false_1 = Uj[2]
            j_false_2 = Uj[:2]
            if i_true_1 == j_true_1 or i_true_2 == j_true_2:
                ts.add_clause(i, 0, j, 0)
            if i_true_1 == j_false_1 or i_true_2 == j_false_2:
                ts.add_clause(i, 0, j, 1)
            if i_false_1 == j_true_1 or i_false_2 == j_true_2:
                ts.add_clause(i, 1, j, 0)
            if i_false_1 == j_false_1 or i_false_2 == j_false_2:
                ts.add_clause(i, 1, j, 1)
    
    sts = ts.satisfiable()
    if not sts:
        print("Impossible")
        return

    for i, ans in enumerate(ts.answer()):
        print(Us[i][:2 - ans], Us[i][2 - ans:])
                
main()
0