結果

問題 No.654 Air E869120
ユーザー zkouzkou
提出日時 2021-03-13 11:04:53
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 231 ms / 2,000 ms
コード長 7,479 bytes
コンパイル時間 206 ms
コンパイル使用メモリ 81,920 KB
実行使用メモリ 78,904 KB
最終ジャッジ日時 2024-10-15 04:10:56
合計ジャッジ時間 5,492 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 41 ms
53,248 KB
testcase_01 AC 40 ms
53,376 KB
testcase_02 AC 39 ms
53,120 KB
testcase_03 AC 40 ms
53,760 KB
testcase_04 AC 41 ms
53,632 KB
testcase_05 AC 42 ms
53,376 KB
testcase_06 AC 39 ms
53,760 KB
testcase_07 AC 41 ms
53,632 KB
testcase_08 AC 41 ms
53,760 KB
testcase_09 AC 42 ms
53,504 KB
testcase_10 AC 225 ms
78,720 KB
testcase_11 AC 205 ms
78,848 KB
testcase_12 AC 222 ms
77,952 KB
testcase_13 AC 231 ms
78,592 KB
testcase_14 AC 209 ms
78,464 KB
testcase_15 AC 198 ms
78,652 KB
testcase_16 AC 145 ms
78,592 KB
testcase_17 AC 141 ms
77,952 KB
testcase_18 AC 143 ms
77,952 KB
testcase_19 AC 152 ms
77,952 KB
testcase_20 AC 116 ms
78,208 KB
testcase_21 AC 123 ms
78,904 KB
testcase_22 AC 89 ms
77,312 KB
testcase_23 AC 99 ms
77,312 KB
testcase_24 AC 123 ms
78,464 KB
testcase_25 AC 90 ms
77,584 KB
testcase_26 AC 99 ms
77,308 KB
testcase_27 AC 83 ms
76,800 KB
testcase_28 AC 95 ms
77,824 KB
testcase_29 AC 85 ms
77,444 KB
testcase_30 AC 73 ms
73,984 KB
testcase_31 AC 73 ms
73,344 KB
testcase_32 AC 71 ms
72,960 KB
testcase_33 AC 75 ms
74,368 KB
testcase_34 AC 75 ms
73,600 KB
testcase_35 AC 40 ms
53,120 KB
testcase_36 AC 39 ms
52,864 KB
testcase_37 AC 40 ms
53,632 KB
testcase_38 AC 39 ms
53,120 KB
testcase_39 AC 39 ms
53,760 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class mf_graph:
    """It solves maximum flow problem.
    """

    def __init__(self, n):
        """It creates a graph of n vertices and 0 edges.

        Constraints
        -----------

        >   0 <= n <= 10 ** 8

        Complexity
        ----------

        >   O(n)
        """
        self.n = n
        self.g = [[] for _ in range(self.n)]
        self.pos = []

    def add_edge(self, from_, to, cap):
        """It adds an edge oriented from the vertex `from_` to the vertex `to` 
        with the capacity `cap` and the flow amount 0. 
        It returns an integer k such that this is the k-th edge that is added.

        Constraints
        -----------

        >   0 <= from_, to < n

        >   0 <= cap

        Complexity
        ----------

        >   O(1) amortized
        """
        # assert 0 <= from_ < self.n
        # assert 0 <= to < self.n
        # assert 0 <= cap
        m = len(self.pos)
        self.pos.append((from_, len(self.g[from_])))
        from_id = len(self.g[from_])
        to_id = len(self.g[to])
        if from_ == to:
            to_id += 1
        self.g[from_].append(self.__class__._edge(to, to_id, cap))
        self.g[to].append(self.__class__._edge(from_, from_id, 0))
        return m

    class edge:
        def __init__(self, from_, to, cap, flow):
            self.from_ = from_
            self.to = to
            self.cap = cap
            self.flow = flow

    def get_edge(self, i):
        """It returns the current internal state of the edges.
        The edges are ordered in the same order as added by `add_edge`.

        Constraints
        -----------

        >   0 <= i < m

        Complexity
        ----------

        >   O(1)
        """
        # assert 0 <= i < len(self.pos)
        _e = self.g[self.pos[i][0]][self.pos[i][1]]
        _re = self.g[_e.to][_e.rev]
        return self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap)

    def edges(self):
        """It returns the current internal state of the edges.
        The edges are ordered in the same order as added by `add_edge`.

        Complexity
        ----------

        >   O(m), where m is the number of added edges.
        """
        result = []
        for i in range(len(self.pos)):
            _e = self.g[self.pos[i][0]][self.pos[i][1]]
            _re = self.g[_e.to][_e.rev]
            result.append(self.__class__.edge(
                self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap))
        return result

    def change_edge(self, i, new_cap, new_flow):
        """It changes the capacity and the flow amount of the i-th edge to `new_cap` and `new_flow`, respectively. 
        It doesn't change the capacity or the flow amount of other edges. 
        See Appendix in the document of AC Library for further details.

        Constraints
        -----------

        >   0 <= new_flow <= new_cap

        Complexity
        ----------

        >   O(1)
        """
        # assert 0 <= i < len(self.pos)
        # assert 0 <= new_flow <= new_cap
        _e = self.g[self.pos[i][0]][self.pos[i][1]]
        _re = self.g[_e.to][_e.rev]
        _e.cap = new_cap - new_flow
        _re.cap = new_flow

    def _bfs(self, s, t):
        self.level = [-1] * self.n
        self.level[s] = 0
        q = [s]
        while q:
            nq = []
            for v in q:
                for e in self.g[v]:
                    if e.cap and self.level[e.to] == -1:
                        self.level[e.to] = self.level[v] + 1
                        if e.to == t:
                            return True
                        nq.append(e.to)
            q = nq
        return False

    def _dfs(self, s, t, up):
        st = [t]
        while st:
            v = st[-1]
            if v == s:
                st.pop()
                flow = up
                for w in st:
                    e = self.g[w][self.it[w]]
                    flow = min(flow, self.g[e.to][e.rev].cap)
                for w in st:
                    e = self.g[w][self.it[w]]
                    e.cap += flow
                    self.g[e.to][e.rev].cap -= flow
                return flow
            while self.it[v] < len(self.g[v]):
                e = self.g[v][self.it[v]]
                w = e.to
                cap = self.g[e.to][e.rev].cap
                if cap and self.level[v] > self.level[w]:
                    st.append(w)
                    break
                self.it[v] += 1
            else:
                st.pop()
                self.level[v] = self.n
        return 0

    def flow(self, s, t, flow_limit=float('inf')):
        """It augments the flow from s to t as much as possible. 
        It returns the amount of the flow augmented.
        You may call it multiple times. 
        See Appendix in the document of AC Library for further details.

        Constraints
        -----------

        >   s != t

        Complexity
        ----------

        >   O(min(n^(2/3)m, m^(3/2))) (if all the capacities are 1) or

        >   O(n^2 m) (general),

        where m is the number of added edges.
        """
        # assert 0 <= s < self.n
        # assert 0 <= t < self.n
        # assert s != t
        flow = 0
        while flow < flow_limit and self._bfs(s, t):
            self.it = [0] * self.n
            while flow < flow_limit:
                f = self._dfs(s, t, flow_limit - flow)
                if not f:
                    break
                flow += f
        return flow

    def min_cut(self, s):
        """It returns a list of length n, 
        such that the i-th element is `True` if and only if there is a directed path from s to i in the residual network. 
        The returned list corresponds to a s−t minimum cut after calling flow(s, t) exactly once without flow_limit. 
        See Appendix in the document of AC Library for further details.

        Complexity
        ----------

        >   O(n + m), where m is the number of added edges.
        """
        visited = [False] * self.n
        q = [s]
        while q:
            nq = []
            for p in q:
                visited[p] = True
                for e in self.g[p]:
                    if e.cap and not visited[e.to]:
                        nq.append(e.to)
            q = nq
        return visited

    class _edge:
        def __init__(self, to, rev, cap):
            self.to = to
            self.rev = rev
            self.cap = cap


def main():
    import sys
    import bisect

    input = sys.stdin.buffer.readline

    N, M, d = map(int, input().split())
    uvpqws = [tuple(map(int, input().split())) for _ in range(M)]

    ts = [[] for _ in range(N)]
    ts[0].append(0)
    ts[N - 1].append(10 ** 9 + d)
    
    for u, v, p, q, w in uvpqws:
        u -= 1; v -= 1
        ts[u].append(p)
        ts[v].append(q + d)
    
    ts_list = []
    start = [0]
    for t in ts:
        ts_list.extend(sorted(t))
        start.append(start[-1] + len(t))

    g = mf_graph(len(ts_list))
    for i in range(N):
        for j in range(start[i], start[i + 1] - 1):
            g.add_edge(j, j + 1, float('inf'))
    
    for u, v, p, q, w in uvpqws:
        u -= 1; v -= 1
        i = bisect.bisect_left(ts_list, p, start[u], start[u + 1])
        j = bisect.bisect_left(ts_list, q + d, start[v], start[v + 1])
        assert ts_list[i] == p
        assert ts_list[j] == q + d        
        g.add_edge(i, j, w)
    
    print(g.flow(0, len(ts_list) - 1))
    
main()
0