結果
| 問題 |
No.1430 Coup de Coupon
|
| コンテスト | |
| ユーザー |
Plan8
|
| 提出日時 | 2021-03-14 14:56:29 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 7,067 bytes |
| コンパイル時間 | 8,546 ms |
| コンパイル使用メモリ | 280,668 KB |
| 最終ジャッジ日時 | 2025-01-19 16:49:29 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 11 TLE * 1 MLE * 15 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/mincostflow>
using namespace std;
typedef long long ll;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<long long> VL;
typedef vector<vector<long long>> VVL;
typedef pair<int,int> Pair;
typedef tuple<int,int,int> tpl;
#define ALL(a) (a).begin(),(a).end()
#define SORT(c) sort((c).begin(),(c).end())
#define REVERSE(c) reverse((c).begin(),(c).end())
#define EXIST(m,v) (m).find((v)) != (m).end()
#define LB(a,x) lower_bound((a).begin(), (a).end(), x) - (a).begin()
#define UB(a,x) upper_bound((a).begin(), (a).end(), x) - (a).begin()
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define REP(i,n) FOR(i,0,n)
#define RFOR(i,a,b) for(int i=(a)-1;i>=(b);--i)
#define RREP(i,n) RFOR(i,n,0)
#define en "\n"
constexpr double EPS = 1e-9;
constexpr double PI = 3.1415926535897932;
constexpr int INF = 2147483647;
constexpr long long LINF = 1LL<<60;
constexpr long long MOD = 1000000007; // 998244353;
template<class T> inline bool chmax(T& a, T b){if(a<b){a=b;return true;}return false;}
template<class T> inline bool chmin(T& a, T b){if(a>b){a=b;return true;}return false;}
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(),std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto& e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost = cost;
}
return result;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
void Main(){
int N,C; cin >> N >> C;
int ans = 0;
VI P(N); REP(i,N) cin >> P[i], ans += P[i];
int GETA = 100000;
atcoder::mcf_graph<int,int> g(N+C+2);
REP(i,C){
int t,x; cin >> t >> x;
if(t == 1){
REP(j,N){
int cost = P[j] - max(0,P[j]-x);
g.add_edge(i,C+j,1,GETA-cost);
}
}
else{
REP(j,N){
int cost = P[j] - P[j] * (100-x) / 100;
g.add_edge(i,C+j,1,GETA-cost);
}
}
}
REP(i,C) g.add_edge(N+C,i,1,0);
REP(i,N) g.add_edge(C+i,N+C+1,1,0);
auto p = g.flow(N+C,N+C+1,min(N,C));
int d = -p.second + p.first*GETA;
ans -= d;
cout << ans << en;
return;
}
int main(void){
cin.tie(0);cout.tie(0);ios_base::sync_with_stdio(0);cout<<fixed<<setprecision(15);
int t=1; //cin>>t;
REP(_,t) Main();
return 0;
}
Plan8