結果
問題 | No.1085 桁和の桁和 |
ユーザー |
![]() |
提出日時 | 2021-03-14 22:42:37 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,614 bytes |
コンパイル時間 | 2,094 ms |
コンパイル使用メモリ | 201,020 KB |
最終ジャッジ日時 | 2025-01-19 17:10:28 |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 32 WA * 3 |
ソースコード
#include "bits/stdc++.h"#define MOD 1000000007#define rep(i, n) for(ll i=0; i < (n); i++)#define rrep(i, n) for(ll i=(n)-1; i >=0; i--)#define ALL(v) v.begin(),v.end()#define rALL(v) v.rbegin(),v.rend()#define FOR(i, j, k) for(ll i=j;i<k;i++)#define debug_print(var) cerr << #var << "=" << var <<endl;#define DUMP(i, v)for(ll i=0;i<v.size();i++)cerr<<v[i]<<" "#define fi first#define se secondusing namespace std;typedef long long int ll;typedef vector<ll> llvec;typedef vector<double> dvec;typedef pair<ll, ll> P;typedef long double ld;struct edge{ll x, c;};ll mod(ll a, ll mod){ll res = a%mod;if(res<0)res=res + mod;return res;}ll modpow(ll a, ll n, ll mod){ll res=1;while(n>0){if(n&1) res=res*a%mod;a=a*a%mod;n>>=1;}return res;}ll modinv(ll a, ll mod){ll b=mod, u=1, v=0;while(b){ll t=a/b;a-=t*b; swap(a, b);u-=t*v; swap(u, v);}u%=mod;if(u<0)u+=mod;return u;}ll gcd(ll a, ll b){ll r = a%b;if(r==0) return b;else return gcd(b, a%b);}// @param b 1// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gstd::pair<long long, long long> inv_gcd(long long a, long long b) {a = mod(a, b);if (a == 0) return {b, 0};// Contracts:// [1] s - m0 * a = 0 (mod b)// [2] t - m1 * a = 0 (mod b)// [3] s * |m1| + t * |m0| <= blong long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b// [3]:// (s - t * u) * |m1| + t * |m0 - m1 * u|// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)// = s * |m1| + t * |m0| <= bauto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}// by [3]: |m0| <= b/g// by g != b: |m0| < b/gif (m0 < 0) m0 += b / s;return {s, m0};}// (rem, mod)std::pair<long long, long long> crt(const std::vector<long long>& r,const std::vector<long long>& m) {assert(r.size() == m.size());int n = int(r.size());// Contracts: 0 <= r0 < m0long long r0 = 0, m0 = 1;for (int i = 0; i < n; i++) {assert(1 <= m[i]);long long r1 = mod(r[i], m[i]), m1 = m[i];if (m0 < m1) {std::swap(r0, r1);std::swap(m0, m1);}if (m0 % m1 == 0) {if (r0 % m1 != r1) return {0, 0};continue;}// assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)// (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));// r2 % m0 = r0// r2 % m1 = r1// -> (r0 + x*m0) % m1 = r1// -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)// -> x = (r1 - r0) / g * inv(u0) (mod u1)// im = inv(u0) (mod u1) (0 <= im < u1)long long g, im;std::tie(g, im) = inv_gcd(m0, m1);long long u1 = (m1 / g);// |r1 - r0| < (m0 + m1) <= lcm(m0, m1)if ((r1 - r0) % g) return {0, 0};// u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)long long x = (r1 - r0) / g % u1 * im % u1;// |r0| + |m0 * x|// < m0 + m0 * (u1 - 1)// = m0 + m0 * m1 / g - m0// = lcm(m0, m1)r0 += x * m0;m0 *= u1; // -> lcm(m0, m1)if (r0 < 0) r0 += m0;}return {r0, m0};}bool is_prime(ll n){ll i = 2;if(n==1)return false;if(n==2)return true;bool res = true;while(i*i <n){if(n%i==0){res = false;}i = i+1;}//if(i==1)res = false;if(n%i==0)res=false;return res;}#define fracMax 10000000ll frac[fracMax];ll ifrac[fracMax];void gen(){frac[0] = 1;ifrac[0] = 1;rep(i, fracMax-1){frac[i+1] = mod((i+1)*frac[i], MOD);ifrac[i+1] = modinv(frac[i+1], MOD);}return;}ll binom(ll n, ll k){if(k<0 or k>n){return 0;}else{return mod(mod(frac[n]*ifrac[n-k], MOD)*ifrac[k], MOD);}}string S;ll D;/**************************************** A main function starts from here *****************************************/int main(){cin >> S >> D;ll N = S.size();if(D==0){bool flg = true;rep(i, N){flg = flg and (S[i]=='0' or S[i] =='?');}if(flg){cout << 1 << endl;return 0;}else{cout << 0 << endl;return 0;}}vector<llvec> dp(N+1, llvec(9, 0));dp[0][0] = 1;rep(i, N){rep(j, 9){if(S[i]=='?'){rep(k, 10){dp[i+1][mod(j+k, 9)] = mod(dp[i+1][mod(j+k, 9)] + dp[i][j], MOD);}}else{ll num = S[i] - '0';dp[i+1][mod(j+num, 9)] = mod(dp[i+1][mod(j+num, 9)] + dp[i][j], MOD);}}}cout << dp[N][mod(D, 9)]<<endl;return 0;}